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The aim of this book is to help make your study of advanced physics interesting and successful. It includes examples of 
modern applications, of new developments, and of how our scienti�c understanding has evolved. 

Physics is our attempt to understand how the Universe works. Fortunately, there are some deep, underlying laws that 
simplify this ambitious task, but the concepts involved are often abstract and will be unfamiliar at �rst. Getting to grips 
with these ideas and applying them to solving problems can be daunting. There is no need to worry if you do not ‘get 
it’ straight away. Discuss ideas with other students, and of course check with your teacher or tutor. Most important of 
all, keep asking questions.

There are a number of features in the book to help you learn:

• Each chapter starts with a short outline of what you should have learned previously and what you will learn through 
the chapter. This is followed by a brief example of how the physics you will learn has been applied somewhere in 
the world.

• Important words and phrases are given in bold when used for the �rst time, with their meaning explained. There is 
also a glossary at the back of the book. If you are still uncertain, ask your teacher or tutor because it is important 
that you understand these words before proceeding.

• Throughout each chapter there are many questions, which enable you to quickly check your understanding. 
The answers are at the back of the book. If you get really stuck with a question, check the answer before you 
carry on.

• Similarly, throughout each chapter there are checklists of Key Ideas that summarise the main points you need to 
learn from what you have just read.

• Where appropriate, Worked examples are included to show how important calculations are done.

• There are many Assignments throughout the book. These tasks are designed to consolidate or extend your 
understanding of a topic. They give you a chance to apply the physics you have learned to new situations and to 
solve problems that require a mathematical approach. Some refer to practical work and will encourage you to 
think about scienti�c methods. The relevant Maths Skills (MS) and Practical Skills (PS) from the AQA AS Physics 
speci�cation are indicated.

• Some chapters have information about the ‘Required practical’ activities that you need to carry out during your 
course. These sections (printed on a beige background) provide the necessary information about the apparatus, 
equipment and techniques that you need to carry out the required practical work. There are questions about the 
use of equipment, techniques, improving accuracy in practical work, and data analysis.

This book covers the requirements of AQA AS Physics and the �rst year of AQA A-level Physics. There are a number of 
sections, questions, Assignments and Practice Questions that have been labelled ‘Stretch and challenge’, which you 
should try to tackle if you are studying for A-level. In places these go beyond what is required for your exams but they 
will help you to expand your knowledge and understanding of physics.

Good luck and enjoy your studies. We hope this book will encourage you to study physics further after you have 
completed your course.

TO THE STUDENT

1
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PRACTICAL WORK 
IN PHYSICS

Physicists need to solve problems, such as design problems. This 
machine weaves superconducting wire into cable to produce powerful 
superconducting electromagnets for accelerators.

Physicists need to apply their knowledge when using practical 
equipment. This is a laser deposition chamber, in which a laser beam 
evaporates material in order to coat another surface.   

Practical work is a vital part of physics. Physicists 
apply their practical skills in a wide variety of contexts: 
from nuclear medicine in hospitals to satellite design; 
from testing new materials to making astronomical 
observations. In your AS or A-level physics course you 
need to learn, practise and demonstrate that you have 
acquired these skills.

WRITTEN EXAMINATIONS
Your practical skills will be assessed in the written 
examinations at the end of the course. Questions 
on practical skills will account for about 15% of 
your marks at AS and 15% of your marks at A-level. 
The practical skills that will be assessed in the written 
examinations are listed below. Throughout this book 
there are questions and longer assignments that will 
give you the opportunity to develop and practise these 
skills. The contexts of some of the exam questions will 
be based on the ‘required practical activities’ (see the 
� nal section of this chapter).

Practical skills assessed in written 
examinations:

Independent thinking

 › Solve problems set in practical contexts

 › Apply scienti� c knowledge to practical contexts

Use and application of scienti� c methods 
and practices

 › Comment on experimental design and evaluate 
scienti� c methods

2
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 › Present data in appropriate ways

 › Evaluate results and draw conclusions with 
reference to measurement uncertainties and errors

 › Identify variables, including those that must 
be controlled

Numeracy and the application of mathematical 
concepts in a practical context

 › Plot and interpret graphs

 › Process and analyse data using appropriate 
mathematical skills

 › Consider margins of error, accuracy and precision 
of data

You will need to use a variety of equipment correctly and safely.
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This graph of velocity against distance for supernova events, similar 
to that originally produced by Edwin Hubble, plots the distances with 
error bars because of the uncertainty in the values.

ASSESSMENT OF PRACTICAL SKILLS
Some practical skills, such as handling materials 
and equipment and making measurements, can only 
be practised when you are doing experiments. For 
A-level, the following practical competencies will 
be assessed by your teacher when you carry out 
practical activities:

 › Follow written procedures

 › Apply investigative approaches and methods when 
using instruments and equipment

 › Safely use a range of practical equipment 
and materials

 › Make and record observations

 › Research, reference and report �ndings

You must show your teacher that you consistently and 
routinely demonstrate the competencies listed above 
during your course. The assessment will not contribute 
to your A-level grade, but will appear as a ‘pass’ 
alongside your grade on the A-level certi�cate.

These practical competencies must be demonstrated 
by using a speci�c range of apparatus and techniques. 
These are as follows:

 › Use appropriate analogue apparatus to record a 
range of measurements (to include length/distance, 
temperature, pressure, force, angles and volume) 
and to interpolate between scale markings

 › Use appropriate digital instruments, including 
electrical multimeters, to obtain a range of 
measurements (to include time, current, voltage, 
resistance and mass)

 › Use methods to increase accuracy of measurements, 
such as timing over multiple oscillations, or use of a 
�duciary marker, set square or plumb-line

 › Use a stopwatch or light gates for timing

 › Use calipers and micrometers for small distances, 
using digital or vernier scales

 › Correctly construct circuits from circuit diagrams 
using dc power supplies, cells and a range of 
circuit components, including those where polarity 
is important

 › Design, construct and check circuits using dc power 
supplies, cells and a range of circuit components

 › Use signal generator and oscilloscope, including 
volts/division and time-base

Instruments and equipment

 › Know and understand how to use a wide range of 
experimental and practical instruments, equipment 
and techniques appropriate to the knowledge and 
understanding included in the speci�cation

3
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 › Generate and measure waves, using microphone 
and loudspeaker, or ripple tank, or vibration 
transducer, or microwave/radio wave source

 › Use laser or light source to investigate 
characteristics of light, including interference 
and diffraction

 › Use ICT such as computer modelling or data logger 
with a variety of sensors to collect data, or use 
software to process data

 › Use ionising radiation, including detectors

For AS, the practical competencies will not be 
assessed, but you will be expected to use these 
skills and these types of apparatus to develop your 
manipulative skills and your understanding of the 
processes of scienti�c investigation.

REQUIRED PRACTICAL ACTIVITIES
During the A-level course you will need to carry out 
12 required practical activities. These are the main 
sources of evidence that your teacher will use to 

award you a ‘pass’ for your competency skills. If you 
are studying the AS course, you will need to carry out 
the �rst six in this list.

1 Investigation into the variation of the frequency 
of stationary waves on a string with length, 
tension and mass per unit length of the string

2 Investigation of interference effects to include 
the Young’s slit experiment and interference by 
a diffraction grating

3 Determination of g by a free-fall method

4 Determination of the Young modulus by a 
simple method

5 Determination of resistivity of a wire using a 
micrometer, ammeter and voltmeter

6 Investigation of the emf and internal resistance 
of electric cells and batteries by measuring 
the variation of the terminal pd of the cell with 
current in it

7 Investigation into simple harmonic motion 
using a mass–spring system and a 
simple pendulum

8 Investigation of Boyle’s (constant-temperature) 
law and Charles’s (constant-pressure) law for 
a gas

9 Investigation of the charge and discharge of 
capacitors; analysis techniques should include 
log-linear plotting, leading to a determination 
of the time constant RC

10 Investigate the relationship between magnetic 
�ux density, current and length of wire using a 
top-pan balance

11 Investigate the effect on magnetic �ux density 
of varying the angle using a search coil 
and oscilloscope

12 Investigation of the inverse-square law for 
gamma radiation

Information about the apparatus, techniques and 
analysis of required practicals 1 to 6 are found in the 
relevant chapters of this book, and information on 
required practicals 7 to 12 will be given in Book 2.

You will be asked some questions in your written 
examinations about these required practicals.

Practical skills are really important. Take time and 
care to learn, practise and use them.

An oscilloscope

A motion experiment using a light gate

4

INTRODUCTION

90223_P002_004.indd   4 28/05/15   11:37 AM



1  MEASURING THE 
UNIVERSE

PRIOR KNOWLEDGE 

You will have carried out experiments and made 
measurements in your previous studies of science, so 
you will know something about the scienti� c method.

LEARNING OBJECTIVES

In this chapter you will � nd out how to get a rough 
idea of atomic size by a simple experiment. You will 
learn about physics experiments and measurements in 
general: what units to use and how they are de� ned; 
how errors can occur; and how to estimate the 
uncertainty in your experimental results. 

(Speci� cation 3.1.1, 3.1.2, 3.1.3, 3.2.1.1 part)

One of the big questions in physics is: “What is the 
Universe made of?” Until 1998, most physicists would 
have said “matter and energy” and been reasonably 
con� dent what that meant. “How much matter 
and energy?” seemed the more pertinent question 
(Figure 1). Albert Einstein had shown that mass and 
energy are interchangeable. Their combined amount 
determines the ‘energy density’ of our Universe, a 
quantity that will decide its ultimate fate.

In 1929 Edwin Hubble published measurements that 
showed that the Universe was expanding. Physicists 
knew that gravity would act to slow the rate of 
expansion. If the energy density was low, then the 
Universe would keep expanding, but at a slower and 
slower rate. A high value of energy density would 

Figure 1 (background) How much matter and energy is there in the 
Universe? This Hubble Ultra Deep Field view taken by the Hubble 
Space Telescope shows a vast number of distant galaxies.

eventually stop the expansion, and the Universe would 
begin to contract, eventually ending in a ‘Big Crunch’.

In 1998 observations of distant supernovae showed 
that the expansion was not slowing at all, but 
speeding up. The measurements were reproduced 
by independent research teams, some using different 
methods. These results suggested that something 
unknown must be pushing the Universe apart. This 
is now called ‘dark energy’ and it seems to make up 
almost 70% of the Universe. Much of the remaining 
30% is also mysterious. Work by Vera Rubin in the 
1970s on the rotation of galaxies had shown that 
there must be a signi� cant amount of mass in the 
Universe that we cannot observe – now known as 
‘dark matter’. Current thinking is that the Universe 
contains a mere 4.9% ‘ordinary’ matter and energy, 
and researchers are aiming to discover what the 
mysterious ‘dark’ quantities might be. 

Physicists are often labelled either theoretical or 
practical. Einstein was � rmly in the theoretical camp. 
Saul Perlmutter shared the 2011 Nobel Prize in Physics 
for practical measurements of the expansion rate 
of the Universe. Both aspects of physics are equally 
important. As Robert Millikan (Nobel Prize winner in 
1923 for his work on the elementary charge) put it:

“Physics walks forward on two feet, namely theory 
and experiment. … Sometimes it is one foot � rst; 
sometimes the other, but continuous progress is only 
made by the use of both.”

5
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1.1 MEASUREMENT IN PHYSICS
Towards the end of the 20th century, just before the 
discoveries of dark matter and dark energy, it was 
suggested that the ‘big questions’ in physics had been 
answered. In a remarkably similar way 100 years 
earlier, some eminent physicists felt that physics was 
almost complete. Newton’s laws described forces and 
motion, Faraday had linked electricity and magnetism, 
and Maxwell’s equations described electromagnetic 
waves. Michelson, famous for measurements of the 
speed of light, went as far as to say:

“The more important fundamental laws and facts 
of physical science have all been discovered, the 
possibility of their ever being supplanted (by) new 
discoveries is exceedingly remote.”

But then, as now, physics was turned upside down 
by experimental discoveries. Radioactive decay, for 
example, proved hard to explain for 19th-century 
scientists, who were still arguing about whether atoms 
really existed. Observations, measurements and 
the analysis of recorded data provide the basis for 
discoveries and advancement in physics.

1.2 THE SCALE OF THINGS
Scienti�c notation
Physicists investigate matter and energy in the 
Universe on every scale, from in�nitesimally small 
measurements of subatomic particles to inordinately 
large ones, like galaxies. These measurements 
generate very large and very small numbers. We need 
a concise way of writing the numbers, to avoid strings 
of zeros across the page. Large numbers are written as 

a number from 1 to 10, multiplied by a power of 10. 
For example, the speed of light, c = 300 000 000 m s–1, 
can be written as 3.0×108 m s–1. In a similar way, 
small numbers are written as a number between 1 
and 10, multiplied by a negative power of 10. In this 
way the wavelength of red light, l = 0.000 000 650 m, 
would be written as l = 6.50 × 10–7 m. This method of 
writing large or small numbers is known as scienti�c 
notation, often referred to as standard form in 
the UK.

It is usual to use powers of 10 that go up in steps 
of 1000, or 103, so the wavelength of the red light 
would probably be written as 650 × 10–9 m. When 
using SI units (Système International d’Unités) (see 
the next subsection), the powers of 103, 106, 109  and 
so on are given names, such as kilo or mega. These 
have abbreviations used as pre�xes, so a distance of 
1000 m (103 m) is known as a kilometre and is written 
1 km. The names and pre�xes that you may come 
across at AS and A-level are shown in Table 1.

Multiplication factor Pre�x Symbol Example length

1000 000 000 000 1012 tera T Radius of Pluto’s orbit (5.9 Tm)

1000 000 000 109 giga G Mean Earth–Moon distance (0.4 Gm)

1000 000 106 mega M Mean radius of Earth (6.37 Mm)

1000 103 kilo k Distance from Manchester to London (320 km)

0.001 10–3 milli m Microwave wavelength (~mm)

0.000 001 10–6 micro µ Wavelength of visible light (~µm)

0.000 000 001 10–9 nano n Approximate atomic diameter (~nm)

0.000 000 000 001 10–12 pico p Wavelength of a gamma ray (~pm)

0.000 000 000 000 001 10–15 femto f Approximate diameter of an atomic nucleus (~fm)

0.000 000 000 000 000 001 10–18 atto a Range of weak nuclear force (~am)

Table 1 SI pre�xes and symbols

QUESTIONS

1. Satellite TV signals are transmitted on a 
frequency of 27 000 000 Hz. Rewrite this 
number using scienti�c notation.

2. The mean distance from the Earth to the Sun 
is about 149 600 000 km. Rewrite this in 
scienti�c notation. (Careful! The distance is 
given in km in the question.)

3. How long does it take light to travel across the 
room you are in? (Distance = speed × time, 
speed of light = 3.0 × 108 m s–1.)

1 MEASURING THE UNIVERSE

6
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Choosing the units
Physics describes the world in terms of the values of 
physical quantities. A physical quantity is something 
that can be measured, such as speed, energy or mass. 
Each measurement needs a unit, a standard value that 
is well de�ned. Giving your height as ‘1.65’ means 
nothing, but giving it as 1.65 metres makes it clear. 
The numerical value of a measurement depends on 
the unit that is used (Figure 2).

Units were often chosen in the past to be a convenient 
size for the measurement, like the ‘grain’ (64.8 mg) 
traditionally used for the mass of medicines and 
gunpowder, or the carat (200 mg) used for precious 
stones. But it is awkward to have many different units 
for each physical quantity. Every unit has to be de�ned 
in terms of a standard, so that the entire world can 
agree on its magnitude. It is not feasible to maintain 
several standard de�nitions for each physical quantity 
like length or mass, and there is the problem of 
converting between units, which has been known to 
have disastrous results (Figure 3).

The Système International d’Unités (SI) for de�ning 
units of measurement was established in 1960 and 
is now almost universally accepted – by the scientif ic 
world at least. SI units are de�ned in terms of seven 
base units. These are shown in Table 2. All other 
units, known as derived units, can be de�ned in 
terms of these base units.

The base units are now almost all de�ned in terms of 
physical constants. For example, a length of one metre 
is de�ned in terms of the speed of light:

One metre is the length of the path travelled by light in 

vacuum during a time interval of 1
299 792 458   

of a second.

This rather arbitrary time is chosen to match the 
older de�nition of the metre. This modern de�nition 
of length depends on specialised equipment, but in 
principle every country can have the same standard 
metre. However, we also need an independent 
de�nition of the second.

One second is the time taken for 9 192 631 770  
complete oscillations of the radiation corresponding 
to the transition between the two hyper�ne levels of 
the ground state of the caesium-133 atom.

The atomic clocks on the satellites that make up the 
Global Positioning System (GPS) (Figure 4) are stable 

Figure 2 Your mass might be 56, 8.8, 123 or 1.1, depending 
on whether you measured it in kilograms, stones, pounds or 
hundredweight. British school science lessons have not used imperial 
units (feet, stones, pounds and so on) since the early 1970s, but most 
students still give their height in feet and inches.

Figure 3 In 1999, the Mars Climate Orbiter probe was destroyed 
because one of the control systems used imperial units (feet and 
inches), but the navigation software used metric (SI) units.

Base quantity Name Symbol

length metre m

mass kilogram kg

time second s

electric current ampere A

thermodynamic temperature kelvin K

amount of substance mole mol

luminous intensity candela cd

Table 2 SI base units

7
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The kilogram is also the only base unit with kilo in its 
name. Logically, the base unit of mass should be the 
gram, but a historical quirk meant that the kilogram 
was chosen. This is important for calculations. If you 
need to put a value of mass into an equation, you 
must use kilograms, so a mass of one kilogram = 1 kg, 
whereas a mass of one gram = 1×10–3 kg.

Units for all the other physical quantities, such as 
velocity, acceleration, force and energy, are derived 
from these base units. For example, the unit for 
velocity is metre per second (m  s–1). Derived units 
are sometimes given names, like newton (N) for force, 
and joule (J) for energy. As a rule the named unit 
is written in full with a lowercase initial letter, but 
the abbreviation begins with an uppercase letter. 
For example, the SI unit for frequency is the hertz, 
abbreviated to Hz.

All named derived units can be expressed in terms 
of the base units. For example, one newton is 
de�ned as the force that will accelerate a mass 
of one kilogram by one metre per second, every 
second. This de�nition can be represented by the 
equation F = ma.

As the units have to be the same on both sides of 
this, or any other, equation (you could not have 
metres = kilograms, for example), then, in terms of 
units, F = ma becomes

1 N = 1 kg × 1 m
(1 s × 1 s)

 = 1 kg m  s–2

Physicists do not always quite stick to the rules for 
using SI units. Sometimes it is just too clumsy to use 
the SI base unit. For example, the kilogram is rather 
large when it comes to the mass of an atom, so the 
atomic mass unit is used. The metre is too small for 
interstellar or intergalactic distances, so astronomers 
use light years or megaparsecs. You might have 
used kilowatt hours, rather than joules, to measure 
the electrical energy used in a house. It is of course 
possible to convert all these to the relevant SI unit.

In the assignment you can �nd a value for the size of 
an atom in metres.

Figure 4 To use the GPS system, the receiver must be able to see a 
minimum of four satellites.

QUESTIONS

 9. One pascal (1 Pa) is the SI derived unit of 

pressure. Since pressure = force
area

, write 

1 Pa in terms of SI base units.

10. Express the joule in terms of base units. Hint: 
What equation links energy or work to other 
quantities?

QUESTIONS

4. The IPK is kept in a controlled atmosphere, 
and is only rarely taken from its vault. Why?

5. The IPK is a right-circular cylinder (height = 
diameter) of 39.17 mm. Why is it this shape? 
Why is the choice of metal important?

6. Use the formula density = mass
volume

 to �nd 

 the density of the standard (IPK) kilogram. 
The SI derived unit for density is kg m–3. 
Remember that 1 mm = 1×10–3 m, so  
1 mm3 = 1×10–9 m3.

7. The earliest units for length were based on the 
human body, for example the cubit in ancient 
Egypt was de�ned as the distance from the 
tip of the fore�nger to the elbow. Give an 
advantage, and a disadvantage, of this system.

8. The speed of light is now exactly 
299 792 458 m  s–1. Why ‘now’ and why 
‘exactly’?

to 1 part in 1012; in other words, they are accurate to 
within 1 second in 32 000 years.

The only base unit not yet de�ned in terms of a 
universal constant is the kilogram. This is still de�ned 
as the mass of a particular cylinder of platinum–
iridium alloy, the International Prototype Kilogram 
(IPK), which is kept in a vault in Paris.

1 MEASURING THE UNIVERSE
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ASSIGNMENT 1: FINDING A MAXIMUM SIZE FOR AN ATOM

(MS 0.1, MS 0.2, MS 2.3, MS 4.3, PS 1.1, PS 3.2)

There is a way to �nd a rough value for the size of an 
atom using ordinary school laboratory equipment. 
Olive oil, a very clean tray, a magnifying glass and scale, 
a ruler and some �ne powder, such as lycopodium 
(that is, pollen – a potential allergen) are needed.

The general idea is to let a small drop of olive oil 
fall onto the surface of some water (Figure A1). 
The drop will spread out into a very thin �lm. If the 
surface of the water is coated with powder �rst, it 
will allow the oil �lm to be seen more clearly.

The volume of the �lm will be the same as the 
volume of oil in the drop. In theory the �lm of oil 
should be a circle. (In practice it is not!) Imagine that 
the �lm is roughly cylindrical in shape (a very thin 
cylinder). Then if the volume and the area of the �lm 
are known, its thickness can be calculated. The oil 

molecules cannot be bigger than this thickness, and 
an atom must be smaller still, so we can arrive at 
the maximum size for an atom.

Figure A2 is a scale drawing of typical results. If you 
are able to do this experiment yourself, you can use 
your own results. Otherwise, use measurements 
from Figure A2.

Questions

A1 Find the volume of the drop (volume of 
sphere = 4

3
πr3).

A2 Find the area of the �lm (area of circle = πR2).

A3 Find the thickness of the �lm, h.

A4 An olive oil molecule is 10 atoms long. What is 
the maximum diameter for an atom in metres?

A5 What have you assumed in this calculation?

transparent    mm scale

(b)   lycopodium powder

(a)

waxed tray
overbrimming
with water

waxed booms

rubber wedge for levelling

1
2

card

hand lens
wire

oil drop

2R

2r

h

Figure A1 The oil drop experiment

20 30 4010
cm

50 60

0.1
cm

0.2 0.3 0.4 0.5

Figure A2 Volume of the drop = volume of the oil �lm = area of the 
oil �lm × thickness of the �lm

9
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10

9

11

12

Figure 5 Try to position your eye close to the scale and look in the 
correct direction to avoid parallax errors.

Figure 6 Ernest Rutherford

KEY IDEAS

 › We use SI units. There are seven base units. All 
other units are derived from these.

 › Large and small numbers are expressed in 
standard form, for example 3.0 × 108.

 › Multiples of units in powers of 10 increasing in 
threes, for example, 103, 106, and so on, are 
given standard pre�xes, for example, kilo (k), 
mega (M).

1.3 EXPERIMENTS IN PHYSICS
Experimental error
It is surprising that we can get an estimate for the 
size of an atom using such simple apparatus as that 
used in Assignment 1. After all, we have managed to 
measure something that is far too small to see. How 
do we know that our answer is right? What errors 
might we have made? Can we correct them, reduce 
them or at least account for them?

The term ‘experimental errors’ does not generally refer 
to the sort of blunders we all make from time to time, 
such as forgetting to connect the battery, misreading a 
scale or failing to take a reading at the right time. These 
are annoying, but repeating the experiment with more 
care usually solves the problem. Experimental errors 
fall into two types: random errors and systematic errors.

Random errors can cause readings to be too high 
or too low. Just as the name suggests, the readings 
�uctuate about the mean. Random errors may arise 
due to a number of different causes.

 › Observation or reading errors: perhaps when timing 
the oscillations of a pendulum, or when trying to read 
the �ickering needle on the dial of an analogue meter.

 › Environmental: perhaps the temperature of 
the room is �uctuating, or the supply voltage 
keeps changing.

The crucial thing about a random error is that it is 
equally likely to give you a result that is too high 
as one that is too low. Repeating the readings and 
calculating a mean value is useful because the more 
readings you have, the more the random �uctuations 
will be averaged out.

Systematic errors on the other hand lead to results 
that are consistently wrong. Repeating these readings 
is pointless, since the error occurs in the same way 

each time. Systematic errors may also occur due to a 
number of reasons.

 › Instrument error: a poorly calibrated thermometer, 
for example, or a top-pan balance that has not 
been zeroed correctly.

 › Reading error: perhaps due to parallax error 
(Figure 5) when reading the scale.

 › Poor experimental design: for example, ignoring 
the effect of an external factor like magnetic �eld, 
temperature or pressure.

Ernest Rutherford (Figure 6), who discovered the 
atomic nucleus, believed that experiments should have 
a clear outcome:

“If your experiment needs statistics, you ought to have 
done a better experiment.”

1 MEASURING THE UNIVERSE
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Accuracy, precision and uncertainty
How sure of our measurements can we be? This 
can be a dif�cult question to answer, especially 
if you happen to be one of the �rst to make the 
measurement. In practice, the experiment is repeated 
by the experimenter to check that it gives consistent 
results. If so, then the measurement is said to be 
repeatable. If other experimenters get similar 
results, preferably in different laboratories using 
different techniques, then the measurement is said to 
be reproducible.

A result is said to be accurate if it is close to the 
true value, that is, the standard or accepted value.  
In exceptional cases, of course, the new 
measurement may not agree with the accepted 
value, because the accepted value is wrong. 
However, you need to be very sure before making 
a claim like that. The standard ‘textbook’ answer 
will have been repeated many times, probably in 
different laboratories and using different methods. 
If the new results prove to be repeatable and 
reproducible, it may mean that an established 
theory could be wrong (Figure 7).

‘Precision’ does not mean that the measurements 
are right; it merely tells you whether the results 
are numerically close together. For example, 
suppose that a measurement was made �ve times 
and the results were 3.223, 3.222, 3.223, 3.221 
and 3.223. These results vary through a range 

QUESTIONS

11. a.  You intend to use a top-pan balance to 
�nd the mass of a particular ball bearing. 
Is it worth repeating the measurement 
several times and taking an average?

b.  Suppose you need to �nd the mass of a 
typical ball bearing. How would you make 
your result as accurate as possible?

12. When you are measuring the diameter of a 
wire, it is good practice to take readings at 
several points along the length of the wire. 
The readings should also be taken in different 
orientations. Explain why.

Figure 7 In 2011 physicists at the Gran Sasso laboratory in Italy 
measured the speed of neutrinos emitted by the accelerator at CERN 
and found they were travelling faster than the speed of light. Special 
relativity says it is impossible for a particle to reach the speed of light, 
as this would give it an in�nite mass. Faster-than-light travel also 
raises the possibility of time travel. Physics Professor Jim Al-Khalili 
promised to eat his boxer shorts on live TV if the measurements were 
shown to be right. In fact, the measurements were wrong … they 
were caused by a loose �bre-optic cable!

of 0.002, from the lowest to the highest value 
recorded. The mean of the �ve readings is 3.222 
(correct to four signi�cant �gures), so we can say 
that the uncertainty in this mean value due to 
the scatter of results is ±0.001. This seems a 
small uncertainty but it depends on the size of the 
measurement. We need to compare this uncertainty 
in the readings with the overall result by expressing 
it as a percentage. The percentage uncertainty is 
(0.001/3.222)×100% = 0.031%. This is a very 
small percentage uncertainty, so the results could 
be said to be very precise. That does not mean 
that the results are correct or even accurate. They 
could all be wrong in the same way. Figure 8 gives 
a visual summary of the meanings of precision 
and accuracy.

When recording your results, you should be 
careful not to overstate the precision by writing an 
excessive number of digits in your answer. Suppose 
that three teachers have timed the school 100 m 
sprint race and have recorded times of 12.3, 12.5 
and 12.6 s for the winner. The average time was 
12.466 66 s. But each teacher’s reading had an 
uncertainty of 0.1 s at least, and the range of 
their readings was 0.3 s, or ±0.15 s, so the result 

11
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should be quoted to a similar level of precision: 
(12.5 ± 0.15) s is more reasonable but, since we 
usually err on the side of caution, (12.5 ± 0.2) s is 
probably appropriate.

On a similar theme, it would be a mistake to 
record this set of readings, all taken with the 
same equipment:

Time T / s 1.214 1.20 0.800 0.5

If the readings are all made with the same precision, 
they should all be quoted to the same number of 
signi�cant �gures. The trailing zeros are important!

Some readings do not vary widely but are still not 
precise, simply because they are measured with 
a device with low resolution. The resolution of a 
measuring device is the smallest increment in the 
measured quantity that can be shown on the device. 
For example, you could �nd the mass of an object 
using a digital balance with a resolution of (that 
is, gives readings in) grams, tenths of grams, or 
hundredths of grams. Suppose you were using the 
balance that measured to the nearest gram to �nd the 
mass of a mango; your readings could be out by 0.5 g. 
In fact, it is worse than this because when you zeroed 

the balance, it could also have been out by 0.5 g. So 
your reading is said to have an uncertainty of ±1 g. 
As a rule of thumb you can estimate the uncertainty 
associated with taking a reading to be ± the smallest 
scale division.

Measurements should always be written with a value, 
the associated uncertainty and an appropriate unit, 
for example, mass of a mango = (142.3 ± 0.1) g. This 
is not too much of a problem, with less than 0.1% 
uncertainty. But if you were �nding the mass of a 
blackcurrant, you would probably want a balance with 
a higher resolution.

You can improve the precision of measurement 
of repeatable events by just doing a lot of them. 
Galileo is said to have timed the oscillations of a 
pendulum (candelabras hung from the ceiling of a 
church) using his pulse as a time keeper. This is not 
a very high-resolution instrument. But by timing 10 
oscillations he could share the uncertainty among all 
10 oscillations, and arrive at a more precise answer.

Whether you are measuring the speed of neutrinos, 
or the area of an oil �lm, it is important to know how 
precise your result is. Every experimental result should 
be accompanied by an estimate of its uncertainty. For 
example, the currently accepted value for the mass of 
an alpha particle is given as

(6.644 656 75 ± 0.000 000 29) × 10–27 kg

sometimes written as

6.644 656 75(29) × 10–27 kg

The numbers in brackets indicate the uncertainty 
in the last two digits. That is a high-precision 
measurement, an uncertainty of 29/664 465 675, or 
less than 5 × 10– 6%. That is equivalent to knowing 
the distance from London to New York to within 
25 cm.

QUESTIONS

13. a.  Describe a real situation where 
measurements could be precise, but 
not accurate.

b.  Describe a real situation where 
measurements could be accurate, but not 
precise.

Figure 8 Precision and accuracy: (a) precise but not accurate; (b) precise and accurate; (c) accurate but not precise;  
(d) neither accurate nor precise.

(a) (b) (c) (d)

1 MEASURING THE UNIVERSE
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1.4  COMBINING UNCERTAINTIES
The �nal result of an experiment is often a 
combination of several measurements. That means 
that the overall uncertainty will depend on a 
combination of the precision of each measurement.

What if you are adding or subtracting two quantities? 
The general rule is:

If you are adding or subtracting quantities, you need 
to add their absolute uncertainties.

An absolute uncertainty is the possible deviation from 
the mean value in the unit of measurement. Finding 
the difference of two measurements can lead to large 
percentage uncertainties. 

Worked example 1
In a situation like that in Figure 9, we might have 
these readings:

Reading A :  Mass of bowl = (200 ± 1) g, which is a 
percentage uncertainty of 0.5%.

Reading B:  Mass of bowl and �our = (220 ± 1) g, a 
percentage uncertainty of ≈0.5%.

 Mass of �our = reading B – reading A = (20 ± 2) g

The uncertainty in this difference between two 
measured values is 2 g since reading B might be 
higher by 1 g and reading A might be lower by 1 g, 
and vice versa. The percentage uncertainty is now 
10% (compared with 0.5% in the measured values).

QUESTIONS

14. Estimate the resolution of Galileo’s time 
keeper. Suppose the candelabra took 
2 s to complete one oscillation. What 
would Galileo’s result be if he timed one 
oscillation? What would the uncertainty be? 
What would the percentage uncertainty be? 
How would these answers be changed if he 
now timed 10 oscillations and used that to 
calculate the time for one oscillation?

15. If you did not have a high-resolution balance, 
how could you �nd the mass of a blackcurrant 
more precisely? (Assume that you have a 
large number of blackcurrants to hand!)

16. Suppose you took three oranges and found 
their mean mass, using a balance with a 
resolution of 0.1 g. Why would it be wrong 
(and certainly misleading) to write your answer 
as 121.333 333 g? How would you write it?

17. a.  What is the uncertainty associated 
with measuring the width of this book? 
(Suppose that you used a 30 cm ruler 
with mm divisions.) Write your answer 
as result ± uncertainty, followed by the 
correct unit.

b.  Why is the uncertainty more of a problem 
if I asked you to use the same ruler to 
measure the thickness of the book?

c.  How would you �nd the thickness of one 
page of this book? How precise do you think 
you could be?

 › An accurate measurement is one that is close 
to the accepted value.

 › A precise set of measurements are closely 
grouped together, with little spread or uncertainty.

KEY IDEAS

 › Experimental errors can be systematic. These 
tend to affect all readings in the same way. 
Repeating the readings does not help. Try to 
improve the method.

 › Experimental errors can be random. These 
�uctuate above and below the mean value. 
Repeated readings will improve the precision of 
these readings.

 › No measurement of a physical quantity is 
ever exact. There is always an uncertainty 
associated with it.

Figure 9 Finding a difference in two quantities, for example 
�nding the mass of sugar in a bowl, can lead to large percentage 
uncertainties.
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mm
0

0

20 30 40

sliding
vernier scale

The reading in mm is taken from the position of
the zero on the sliding scale. Here this is between
24 and 25. The next signi�cant �gure (to 0.1 mm)
is found by judging which scale mark on the
sliding scale is perfectly aligned with a mark on
the main scale. Here this is 5.
The reading is 24 + 0.5 = 24.5 mm.

main scale

50 60

10

Figure 10 Vernier callipers can measure length to one-tenth of a 
millimetre.

Worked example 2
Using the data given above for the metal cube, the 
percentage uncertainties in each measurement of 
length are 0.1/2.0 = 5%. So the uncertainty in volume 
is 5 + 5 + 5 = 15%.

To �nd the density, we need to divide the mass 
by the volume. The percentage uncertainty in 
the measurement of mass = 1/89 = 1.1%. The 
overall uncertainty in the density value is therefore 
15+1.1 = 16%.

Density of the cube    = 89/8.37 = 10.6 ± 16% or 
(10.6 ± 1.7) g cm–3. 

Since the accepted value for the density of lead, 
11.34 g cm–3, falls within the range of uncertainty, the 
metal could be lead. The measured value for density is 
not precise enough, however, to rule out other metals. 
We could improve the precision by using instruments 
with better resolution to measure length and mass. 
Two instruments commonly used in the laboratory 
to measure length precisely are shown in Figures 10 
and 11. They both use a vernier scale – a movable 
scale that allows a fractional part on the main scale to 
be determined.

What if you are dividing or multiplying two quantities? 
Suppose you have been given a small metal cube, 
which you suspect is made of lead. You might decide 
to measure the density of the cube to see if it could 
indeed be lead. The density of a material is de�ned as 
the mass of a given volume. In SI units this should be 
measured in kilograms per cubic metre, but grams per 
cubic centimetre is also commonly used. Lead has a 
density of 11.34 g cm–3 .

As density equals mass divided by volume, 

density = mass
volume

 

you might begin by using a top-pan balance to 
measure the mass, and a ruler marked in millimetres 
to measure the dimensions of the cube.

Mass of metal cube = (89 ± 1) g

Length of metal cube = (2.1 ± 0.1) cm

Width of metal cube = (1.9 ± 0.1) cm

Depth of metal cube = (2.1 ± 0.1) cm

The volume of the cube = 2.1 × 1.9 × 2.1 = 8.379 cm3

But how precise is this measurement? It is possible 
that all the dimensions have been underestimated 
by 0.1 cm, so the volume could be as large as 
2.2 × 2.0 × 2.2 = 9.68 cm3. Similarly, the volume could 
be as small as 2.0 × 1.8 × 2.0 = 7.20 cm3. Possible 
values for the volume of the cube are from 7.20 to 
9.68 cm3, a range of 2.48 cm3, so the uncertainty is 
approximately ±1.24   cm3. The volume of the cube 
is therefore (8.38 ± 1.24) cm3, an uncertainty  
of almost 5%.

It is possible to �nd the uncertainties in calculated 
values by inserting the largest and smallest values of 
your data into the relevant formulae. But this can be 
time-consuming and there is a better way. You saw in 
Worked example 1 that to �nd the uncertainty in the 
difference of two masses you simply add the individual 
uncertainties together. But if you are multiplying or 
dividing two quantities, the general rule is:

If you are multiplying or dividing quantities, then you  
add the percentage uncertainties together.

1 MEASURING THE UNIVERSE
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Turning the ratchet moves the spindle until it just touches
the object. The ratchet then slips to avoid deforming the object.

The reading to the nearest 0.5 mm is taken where the thimble
meets the sleeve. Here this is 12.5 mm. The �nal signi�cant
�gures are given by judging which mark on the rotating scale
coincides with the horizontal line on the sleeve. Here this is 16.

The reading is 12.5 + 0.16 = 12.66 mm.

ratchetrotating
thimble

sleeve

anvil spindle lock
mm
scale

0.01 mm
vernier scale

200 5 10

15

10

Figure 11 A micrometer screw gauge can measure length to  
one-hundredth of a millimetre.

QUESTIONS

18. Suppose you could improve the precision 
of either the measurement of length or the 
measurement of mass, for the small metal 
cube considered in the text. Which would 
most improve your �nal answer?

19. The cube may not be perfect, so that the 
dimensions may differ at different points. 
How would you allow for this?

20. You have been asked to �nd the density of a 
liquid, which you suspect is ethanol, which has a 
density of around 80% that of water. Suppose 
that you measure the volume using a measuring 
cylinder and its mass on a top-pan balance. By 
estimating the values of the mass and volume of 
ethanol you would use, and the resolution of the 
measuring instrument, calculate an approximate 
value for the uncertainty in your answer.

KEY IDEAS

 › If two physical quantities are to be added 
or subtracted, then their uncertainties must 
be added.

 › If two physical quantities are to be multiplied or 
divided, then their percentage uncertainties must 
be added.

ASSIGNMENT 2: FINDING THE UNCERTAINTY IN THE ATOMIC DIAMETER 
MEASUREMENT

(MS 0.4, MS 1.1, MS 1.5, PS 1.1, PS 2.1,  
PS 2.3, PS 3.2, PS 3.3)

It would be useful to estimate the uncertainty in our 
measurement of atomic size in Assignment 1.

 ›  First you need to estimate the uncertainty in all 
your measurements.

 › Then calculate the percentage uncertainty for 
your readings.

 › Estimating the uncertainty in the area of the oil 
�lm is dif�cult. One way would be to estimate 
the largest and smallest area that the �lm could 
be. This will give you a spread of results. Halve 
this to �nd the uncertainty.

 › Combine the uncertainties.

For example, the uncertainty in the diameter of the 
oil drop could be ±0.1 mm. This is a signi�cant 
uncertainty, since the drop only has a diameter of 
0.5 mm, so that is a ±20% uncertainty. The radius 
= (0.25 ± 0.05) mm since we divide the uncertainty 
by 2 as well. But the uncertainty in the volume will 
be larger than that because volume depends on 
the radius cubed, V ∝ r3, so that is three times the 
percentage uncertainty. In this case volume has a 
percentage uncertainty of 60%.

Questions

A1 What is the �nal uncertainty in your value for 
atomic diameter?

A2 How would you improve the experimental method 
to try to reduce the uncertainty in this answer?
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Figure 12 The equation of a straight line is always of the form 
y mx c= + , where y is the variable plotted vertically, x is the variable 
plotted horizontally, m is the gradient and c is the intercept on the 
y-axis. If the equation is to be a straight line, m must be a constant 
(�xed number). In this case the equation says mass collected (y) = 
average mass of a raindrop (m) × number of raindrops (x) + any 
other mass (perhaps the container or a zero error on the balance).

The gradient of the line is found by calculating
difference in y

difference in x
, which in this case is

         mass         

number of drops
 = mass of one raindrop

The intercept of the line on the y-axis gives a mass 
reading before any raindrops are collected. This value, 
3.50 g in this case, is a zero error, which might not be 
noticed without the graph.

1.5 USING GRAPHS
A common way of reducing the uncertainty in a 
measured quantity is to repeat the reading, using a 
set of different values of the independent variable, and 
then plot a graph. Suppose you were asked to �nd the 
mass of a raindrop. You have an electronic top-pan 
balance with resolution of 0.01 g. Assume that you 
can count the raindrops! You could use any one of the 
following methods:
A Catch one raindrop and �nd its mass.
B Repeat the above method lots of times and 

�nd the mean mass.
C Collect 100 drops, �nd the mass and divide 

by 100.
D Collect 100 drops, recording the mass after every 

10 drops. Then plot a graph of your answers.
Which method will give the most precise, and the most 
useful, results?
Method A will give a very large percentage 
uncertainty. The average mass of a raindrop depends 
on the type of rain (it varies from mist to downpour!) 
but is unlikely to be much more than 100 mg. The 
reading would have a percentage uncertainty of 

0.01
0.1

100 10%

 


 × =

Method B is better, but tedious! Theoretically, the 
precision is equivalent to that of method C, which 
would give a percentage uncertainty of 

0.01
10

100 0.1%

 


 × =

In practice, drying the container between each 
drop would be ridiculous. Method D gives the same 
uncertainty as method C, but allows you to spot any 
results that do not �t the pattern and ignore them if 
they are genuinely anomalous results. The results of 
such an experiment are shown in Table 3 and the graph 
obtained is shown in Figure 12.

Number of raindrops Accumulated mass / g

10 3.60

20 3.70

30 3.80

40 3.90

50 4.01

60 4.11

70 4.20

80 4.30

90 4.40
100 4.49

Table 3 Mass of every 10 raindrops

QUESTIONS

21. Look at the graph in Figure 13. It shows 
another set of results from the raindrop 
experiment. What do you think happened? 
Could you still use the results?

3.00

3.50

4.00

4.50

M
as

s 
/ g

5.00

5.50

6.00

Mass of rain versus number of raindrops collected

0 20 40 60

Number of raindrops

80 100 120

Figure 13 Plot of another set of results
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Plotting graphs of experimental results
Graph-plotting in physics is not quite the same as in 
mathematics, where you are often plotting a function 
with perfectly accurate points that lie on an ideal curve. 
Physics data is often taken from real-life experiments 
and has some uncertainty associated with it. The data 
points will be scattered rather than being a perfect 
�t to a function. We often do not know whether the 
results are following a mathematical law or not. 
Indeed, that is often what we are trying to �nd out. In 
practice, it is dif�cult to draw quantitative conclusions 
from a curve, so we try to draw straight-line graphs to 
test relationships between quantities. This may mean 
that we plot a function of the variables, for example, x2 
or 1/x, instead of the raw data.

Suppose that you were studying a falling object 
(Figure 14) and took a series of measurements 

Figure 14 Time-lapse image of a falling object

showing how far the object had fallen after certain 
periods of time, say after 1, 2, 3, … seconds. You 
would get a graph like the one shown in Figure 
15(a). It may look as if distance depends on time 
squared but we cannot be sure from a curved graph. 
The distance fallen, s, and the time taken, t, could 
be related by a quadratic (squared) equation like 
s At B= 2 + , where A and B are constants (just a 
�xed number). This needs to be compared with the 
equation of a straight line, y mx c= + :

s At B

y mx c

=

=

2 +

+
↓ ↓↓ ↓

Plotting s on the y-axis and t on the x-axis gives 
a curve (Figure 15a), but if we plot s on the y-axis 
and t2 on the x-axis, we should get a straight line 
(Figure 15b). If the points are a good �t to the straight 
line, we can deduce that the experimental data follows 
the relationship. The gradient will equal the constant 
A and the y-intercept will equal the constant B.

Table 4 shows a few examples of what to plot in order 
to con�rm a relationship.

Good practice in graph drawing
Accuracy in graph work is important, not least 
because it often accounts for a signi�cant number of 
exam marks. So here are a few tips on good practice:

 › Choose your scales on each axis so that your data 
spreads over at least half of the axis. Use a false 
origin if necessary. You do not need to start the 
graph at (0, 0), unless you have a measured data 
point to plot there.

 › Use a sharp pencil and a ruler to draw the axes.

 › Label each axis with the quantity and unit 
separated by a solidus (slash) /, for example  
T 2 / s2, F / N, l / m, and so on. 

Variables Constant(s) Possible 
relationship

Rearrange to y x Gradient (constant 
for a straight line)

y-intercept

m, T k T m
k

= π2 T 2 = 4π 2
m
k( ) T 2 m 4 π2

k
0

f, l c c = f l f = c
λ

f 1
λ

c 0

V, i E, r V = E – ir V = E – ir V i –r E

F, r G, M, m F GMm
r2

= F GMm
r2

= F 1
r2

GMm 0

Table 4 Examples of what to plot to con�rm a relationship
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Figure 16 Calculating the gradient of the best-�t line

 › Plot points (using a sharp pencil) with a small cross.

 › Give the graph a meaningful title.

Drawing a best-�t straight line and calculating 
the gradient
If the points look as if they may fall close to a 
straight line, you may opt to draw a ‘best-�t’ straight 
line. When a computer does this mathematically, it 
chooses the straight line that minimises the total 
distance of the points from the line. You should 
aim to do the same. You have two advantages over 
the computer:

 › You can use your discretion and ignore any 
outliers, especially if you have practical reasons 
to suspect their accuracy. An outlier may pull 
a computer’s best-�t line way off course. Try to 
identify these anomalous results, repeat them 
or at least try to explain why they are going to 
be ignored.

 › You may know that the line must go through a 
given point, (0, 0) for example, and you can pivot 
your ruler about that point. (Make sure you have a 
30 cm clear plastic ruler so that you can see the 
points through it.)

gradient =
 (y2 – y1)
(x2 – x1)

Figure 15 Finding the relationship between distance fallen and 
time taken
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The gradient of a graph in physics often represents 
an important physical quantity. For example, if 
you plot velocity (y-axis) against time (x-axis), the 
gradient at a particular point gives the value of the 
acceleration at that time. You will often need to �nd 
the gradient of a best-�t line. Choose a large section 
of the graph, covering at least two-thirds of each 
axis (Figure 16). This will reduce the effect of any 
uncertainties in reading the points. Choose your two 
points, say (x1, y1) and (x2, y2); then

It is useful to include the unit when quoting the value 
of a gradient. The unit will be that of the quantity on 
the y-axis divided by that of the quantity on the x-axis. 
So for a velocity against time graph, the gradient will 
have a unit of (m s–1)/s = m s–2.

Uncertainties in graph plotting
Uncertainties on graphs may arise in two ways:

 › There may be a large uncertainty in 
each measurement.

 › It might be dif�cult to choose the best-�t line to 
�nd the gradient.

The �rst problem can be dealt with using ‘error bars’. 
Plot the reading with a small cross as before. Then 
use bars through the point to show the horizontal and 
vertical extent of the uncertainty (see Figure 17).

1 MEASURING THE UNIVERSE
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F igure 17 Best and worst � ts through points with error bars

The second problem can be dealt with by drawing a 
best-� t line and then a ‘worst-case’ best-� t line (see 
Figure 17). Find the gradient and intercept of both 
lines. Your answer can be quoted as best-� t gradient 
± (difference between the values).

KEY IDEAS

 › The equation of a straight line is of the form 
y mx cy mx cy my m=y mx c+x c, where m is the gradient and c is a 
constant equal to the y-intercept.

 › Uncertainty in a data point can be shown on a 
graph by drawing error bars.

 › Best-� t and worst-� t lines can be drawn through 
the error bars to estimate the uncertainty in the 
gradient and intercept values.

ASSIGNMENT 3: PLOTTING A GRAPH

(MS 0.1, MS 1.1, MS 1.5, MS 3.1, MS 3.2, 
MS 3.3, MS 3.4, PS 1.1, PS 2.3, PS 3.1, 
PS 3.2, PS 3.3)

An experiment has been carried out to measure 
the time it takes for a pendulum to complete 10 
oscillations. Theory suggests that the time for 
one oscillation, T, depends on the length of the 
pendulum, l, according to the following equation:

T l
g

= π2= π2= π

The results are shown in Table A1.

Time for 10 
oscillations / s

Length of 
pendulum / cm

8.7 20.0

12.0 30.2

13.7 40.4

14.2 49.8

14.3 60.2

16.7 70.0

17.0 80.2

19.2 89.9

19.0 100.2

22.0 110.0

25.0 120.0

Table A1

The uncertainty in the time measurement was 
estimated to be ±0.1s. The uncertainty in the 
length was estimated at ±0.1cm.

Questions

A1  Plot a suitable graph to test the relationship.

A2  Find the gradient of the best and ‘worst’ 
case lines.

A3 Find the value of g that this gives you.

A4  Estimate the uncertainty in your answer. 
Comment on the precision of this result.

A5  The accepted value for g is 9.81 m s–2. Is your 
result accurate?
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1.6 MAKING AN ESTIMATE
Finding a rough value for the diameter of an atom, and 
the uncertainty in this value, is an example of estimation, 
helped by a practical measurement or two. Estimation is 
a very useful skill in physics, and indeed in life!

It is possible to estimate the answers to questions 
such as: How much water is there in the reservoir? 
How many people could it supply? How many cars are 
there on the M25 at a given time? How many wind 
turbines would be needed to provide all the electricity 
for a small town? You do not always need an exact 
answer – sometimes an order of magnitude will do. It 
is good enough to know whether the answer is tens, 
hundreds, thousands or millions. An estimate is also 
useful for checking your answer in an exam question, 
for example, “Could the radius of Earth really be 
6000 m or have I made an error?”

Enrico Fermi, a physicist who built the world’s �rst 
nuclear reactor in a squash court, used to ask his 
students questions like these, which could be solved, 
very approximately, on the back of an envelope.

 › How many grains of sand are there on 
Earth’s beaches?

 › How many piano tuners are there in Chicago?

 › How many atoms are in your body?

(This sort of question has also become popular 
in some university interviews – popular with the 
interviewers rather than with candidates!)

If you are faced with one of these, such as, “How many 
cows could you �t in a barn?”:

 › Do not panic!

 › Think of something you know, or can reasonably 
guess or �nd out about the situation.

 › Break the problem down into smaller, hopefully 
easier, questions.

 › Make simplifying assumptions, for example treat 
the cow as a cube!

Fermi gave this example. When asked, “What is the 
diameter of the Earth?”, he reasoned like this:

1.  I pass through three time zones when I �y from 
New York to Los Angeles.

2.  I know that it is about 3000 miles from New York 
to Los Angeles.

3. That is 1000 miles per time zone, on average.

4.  There are 24 hours in a day, so there must be 
24 time zones around the world.

5.  24 time zones×1000 miles per time zone = 
24 000 miles.

So that is a circumference of about 24 000 miles. 
Circumference = π × diameter. Take π as approximately 
equal to 3, which gives the diameter of the Earth as 
about 8000 miles. An accurate value is 7926 miles, 
so 8000 is not a bad estimate!

ASSIGNMENT 4: MAKING AN ESTIMATE

(MS 0.4, MS 1.4)

Here are a few ‘Fermi-type’ questions for you to try. At 
this stage, the way you approach this is just as important 
as the result, so record your method as well as your 
answer. It would be useful to work with a partner, or in 
a small team, at �rst so that you can discuss different 
approaches to the problem. You can look up some of 
the basic facts if necessary, but try to make as much 
progress as you can by reasoning from what you know.

Questions

A1  How many Jelly Babies could you �t into a 
supermarket carrier bag?

A2 “If all the mobile phone chargers in the UK 
were unplugged when not in use, we could 

save enough energy to boil 1 000 000 kettles 
every year.” Could this be true? If it is true, is 
it important?

A3 In his book Sustainable Energy, David MacKay 
says that trying to save energy by unplugging 
mobile phone chargers is like “trying to bail 
out the Titanic with a tea-spoon”. How long 
would that take?

A4 What mass of plastic is used every year in the 
UK to hold bottled water?

A5 Make up your own estimation question and 
swap with another group. (You should have an 
answer, or at least a way of getting there.)

1 MEASURING THE UNIVERSE
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Moving on: the start of the atomic age
In the �rst few years of the 20th century, the 
arguments over atomic reality were quickly forgotten. 
In 1897 the scienti�c debate was shifted by two 
discoveries: that of the electron (by J. J. Thomson in 
Cambridge) and radioactivity (by Henri Becquerel in 

Paris). These showed not only that the atom was real, 
but also that it had a structure and could be taken 
apart. The search to understand the composition of 
the atom had begun. But it was not until the 1950s 
that we could actually see images of atoms – search 
for ‘�eld ion microscope’.

PRACTICE QUESTIONS

1. You have been asked to measure the 
thickness of a sheet of printed paper.

a. Describe how you would do this as 
precisely as possible.

b. Estimate the uncertainty of your reading.

c. The average density of the paper is quoted 
as 120 g m–3. How would you verify this?

2. The timing of races for a school sports day is 
done manually. Time keepers for the 100 m 
race stand at the �nish line with stopwatches. 
They start their stopwatches when they hear 
the starting pistol and stop them as the 
runners cross the �nish line.

a. The physics teacher points out that the time 
keepers start their stopwatches some time 
after the runners have started because of 
the time taken for the sound of the pistol to 
reach them. Given that the speed of sound 
in air is around 340 m s–1, calculate the size 
of this delay.

b. Is this a systematic error or a random 
error? Explain your answer.

c. The time for the winner is given by the 
time keeper as 12.72 s. The physics 
teacher is critical of this. Explain why 
and rewrite the time in a way that can be 
justi�ed scienti�cally.

3. An electric kettle is used to bring water to 
the boil. The temperature of the water is 
measured with an electronic thermometer 
every 30 s. The results are shown in 
Table Q1.

a. A student has made a number of 
mistakes in recording the results. Suggest 
two corrections.

b. Plot a graph of temperature (y-axis) 
against time (x-axis).

Time Temperature

0   10

30   35.3

60   54.7

90   72.4

120   87

150   95

180 100.2

210 100.2

Table Q1

c. Use the graph to calculate the greatest 
rate of increase of temperature.

d. Explain the shape of the graph.

4. A metal cube of side length 4.0 cm is 
manufactured to a tolerance of ±0.1 cm. Its 
volume will be:

A (64.0 ± 0.1) cm3

B (64.0 ± 0.2) cm3

C (64 ± 5) cm3

D (64 ± 7.5) cm3

5. The speed limit on British motorways is 
70 mph. In SI units this would be written as:

A 31.1 m s–1

B 1.87 km min–1

C 43.8 km h–1

D 43.8 m s–1

6. Density is measured in kilograms per cubic 
metre. Water has a density of 1000 kg m–3. 
What is the mass of 1 litre of water?

A 100 kg

B 10 kg

C 1 kg

D 100 g
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7. Estimate the mass of a � ve-door family 
hatchback car. Which of these values is 
closest to the actual value?

A 100 kg

B 500 kg

C 1000 kg

D 5000 kg

8. Pressure is de� ned as the force on a certain 
area. Which of these would be the correct 
unit to measure pressure?

A pound per square inch

B kilogram per square metre

C newton per cubic metre

D newton per square metre

9. Estimate how many footballs you could � t 
into your (empty) classroom. Choose from:

A 300 000

B 30 000

C 3000

D 300

10. An experiment using polarised light requires 
a sugar solution of strength 100 g of sugar 
per litre of water. You are provided with 
a measuring cylinder of capacity 50 cm3, 
marked in cm3, and an electronic balance 
sensitive to 1 g. The maximum strength of 
your solution could be:

A 100.3 g cm–3

B 100.2 g cm–3

C 102 g cm–3

D 103 g cm–3

11. In an experiment a student measures the 
wavelength, l, of different frequencies, f, of 
sound. The velocity of sound, v, is given by 
velocity = frequency×wavelength, v = f×l. 
To � nd a value for the velocity from the 
gradient of a graph, what should the student 
plot? Choose the correct row from Table Q2.

y-axis x-axis Gradient

A f l v

B l f v

C f 1
l v

D
1
l

1
f

v

Table Q2

12. A student needs to measure the dimensions 
of a mobile phone as precisely as possible. 
Which of the rows in Table Q3 would be the 
most appropriate measuring devices?

Length Width Thickness

A Ruler Vernier 
callipers

Micrometer

B Ruler Micrometer Vernier 
callipers

C Ruler Vernier 
callipers

Micrometer

D Micrometer Micrometer Vernier 
callipers

Table Q3

13. Two students are measuring the current 
through a circuit. Student A has a digital 
meter, which reads 0.1 A when the circuit is 
off. Student B has an analogue meter, which 
he views from an angle, leading to a parallax 
error. Which row in Table Q4 correctly 
describes the nature of these errors?

Student A Student B

A Random Random

B Systematic Random

C Random Systematic

D Systematic Systematic

Table Q4
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14. Which row in Table Q5 correctly names 
the part of the micrometer screw gauge 
in Figure Q1 and correctly identi�es 
its function?

Part Name Function

A 6 Spindle To clamp the specimen 
tightly

B 7 Ratchet To slip, rather than over-
tighten and deform the 
specimen

C 4 Ratchet To lock the jaws

D 1 Sleeve To measure the specimen

Table Q5

0 5

1

74

2 3 5 6

35

30

25

Figure Q1

15. The micrometer in Figure Q1 is reading:

A 5.34 mm

B 5.534 mm

C 5.84 cm

D 5.34 cm

16. A micrometer like that in Figure Q1 has:

A A range of 25 cm and a resolution of 
0.1 mm

B A range of 25 mm and a resolution of 
0.01 mm

C A range of 25 mm and a resolution of 
0.1 mm

D A range of 2.5 mm and a resolution of 
0.01 mm

17. Vernier callipers are to be used to measure 
a short pipe.

 Which of the following statements is false?

A Vernier callipers can be used to measure 
the internal and external diameter of 
the pipe.

B Vernier callipers have better resolution 
than a micrometer.

C Vernier callipers have a larger range than 
a micrometer.

D Vernier callipers can measure to the 
nearest 0.1 mm.

18. Look at the calliper scales in Figure Q2.

0
cm

1 2 3 4

0 1 2 3 4 5 6 7 8 9 10

Figure Q2

 What is the reading on the callipers?

A 1.07 cm

B 1.15 cm

C 7.25 cm

D 1.17 cm
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