
The aim of this textbook is
to provide a detailed
understanding of each topic
of the new AQA A Level
Computer Science
specification. It is presented in
an accessible and interesting
way, with many in-text
questions to test students’
understanding of the material
and their ability to apply it.

The book is divided into 12
sections, each containing
roughly six chapters. Each
chapter covers material that
can comfortably be taught
in one or two lessons. It will
also be a useful reference and
revision guide for students
throughout the A Level course.
Two short appendices contain
A Level content that could
be taught in the first year of
the course as an extension to
related AS topics.

Each chapter contains
exercises, some new and
some from past examination
papers, which can be set as
homework. Answers to all
these are available to teachers
only, in a Teachers Supplement
which can be ordered from
our website
www.pgonline.co.uk

About the authors
Pat Heathcote is a well-known
and successful author of
Computer Science textbooks.
She has spent many years as a
teacher of A Level Computing
courses with significant
examining experience. She has
also worked as a programmer
and systems analyst, and was
Managing Director of Payne-
Gallway Publishers until 2005.

Rob Heathcote has many
years of experience teaching
Computer Science and is
the author of several popular
textbooks on Computing. He
is now Managing Director of
PG Online, and writes and
edits a substantial number of
the online teaching materials
published by the company.

Computer
Science

AQA AS and A Level

Computer
Science

AQA AS and A Level

AQA AS and A Level
Computer Science

P.M. Heathcote

R.S.U. Heathcote

Published by
PG Online Limited
The Old Coach House
35 Main Road
Tolpuddle
Dorset
DT2 7EW
United Kingdom
sales@pgonline.co.uk
www.pgonline.co.uk

2016

ii

Acknowledgements
We are grateful to the AQA Examination Board for permission to use questions from past papers.

The answers in the Teacher’s Supplement are the sole responsibility of the authors and have neither
been provided nor approved by the examination board.

We would also like to thank the following for permission to reproduce copyright photographs:

Screenshots of Arriva Bus App © Arriva PLC
Colossus photograph © The National Archives
Google Maps ‘StreetView’ © Google 2015
Screenshot from Roboform website © Roboform
Alan Turing © By kind permission of the Provost and Fellows, King’s College, Cambridge
from Archives Centre, King’s College, Cambridge. AMT/K/7/12
Trans-continental Internet connections © Telegeography
Internet registries map © Ripe NCC
Other photographic images © Shutterstock

A catalogue entry for this book is available from the British Library

ISBN: 978-1-910523-07-0

Copyright © P.M.Heathcote and R.S.U.Heathcote 2016

All rights reserved

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means without the prior written permission of the copyright owner.

Printed and bound in Great Britain by Lightning Source Inc., Milton Keynes

Graphics: Rob Heathcote and Roger Stayte

Cover picture © ‘South Coast Sailing’ 2014
Oil on canvas 60x60cm
Reproduced with the kind permission of Heather Duncan
www.heatherduncan.com

Design and artwork by OnThree
www.on-three.com

Typeset by Chapter One (London) Ltd, Ian Kingston

First edition 2016, reprinted 2016

iii

Preface
The aim of this textbook is to provide detailed coverage of the topics in the new AQA AS and A Level
Computer Science specification.

The book is divided into twelve sections and within each section, each chapter covers material that can
comfortably be taught in one or two lessons.

In the first year of this course there will be a strong emphasis on learning to program. You will start by
learning the syntax of your chosen programming language – that is, the rules of how to write correct
statements that the computer can understand. Then you will code simple programs, building up your
skills to the point where you can understand and make additions and amendments to a program
consisting of several hundred lines of code.

Sections 1 and 2 of this book can be studied in parallel with your practical programming sessions. It will
give you practice in the skills you need to master.

In the second year of this course the focus will turn to algorithms and data structures, covered in
Sections 7 and 8. These are followed by sections on regular languages, the Internet and databases.

Object Oriented Programming and functional programming are covered in the final section, which
describes basic theoretical concepts in OOP, as well as providing some practical exercises using the
functional programming language Haskell. Lists, the fact-based model and ‘Big Data’ are all described
and explained.

Two short appendices contain A Level content that could be taught in the first year of the course as an
extension to related AS topics.

The OOP concepts covered may also be helpful in the coursework element of the A Level course.

Each chapter contains exercises and questions, some new and some from past examination papers.
Answers to all these are available to teachers only in a Teacher’s Supplement which can be ordered from
our website www.pgonline.co.uk.

Approval message from AQA

This textbook has been approved by AQA for use with our qualification. This means that we have
checked that it broadly covers the specification and we are satisfied with the overall quality. Full details of
our approval process can be found on our website.

We approve textbooks because we know how important it is for teachers and students to have the right
resources to support their teaching and learning. However, the publisher is ultimately responsible for the
editorial control and quality of this book.

Please note that when teaching the A Level Computer Science course, you must refer to AQA’s
specification as your definitive source of information. While this book has been written to match the
specification, it cannot provide complete coverage of every aspect of the course.

A wide range of other useful resources can be found on the relevant subject pages of our
website: www.aqa.org.uk.

iv

Contents

Section 1
Fundamentals of programming� 1

Chapter 1	 Programming basics� 2

Chapter 2	 Selection� 8

Chapter 3 	 Iteration� 13

Chapter 4	 Arrays� 17

Chapter 5	 Subroutines� 21

Chapter 6	 Files and exception handling� 29

Section 2
Problem solving and theory of computation� 33

Chapter 7	 Solving logic problems� 34

Chapter 8	 Structured programming� 39

Chapter 9 	 Writing and interpreting algorithms� 42

Chapter 10	 Testing and evaluation� 48

Chapter 11	 Abstraction and automation� 52

Chapter 12	 Finite state machines� 60

Section 3
Data representation� 67

Chapter 13	 Number systems� 68

Chapter 14	 Bits, bytes and binary� 72

Chapter 15 	 Binary arithmetic and the representation of fractions� 77

Chapter 16	 Bitmapped graphics� 83

Chapter 17	 Digital representation of sound� 88

Chapter 18	 Data compression and encryption algorithms� 93

v

Section 4
Hardware and software� 99

Chapter 19	 Hardware and software� 100

Chapter 20	 Role of an operating system� 103

Chapter 21 	 Programming language classification� 106

Chapter 22	 Programming language translators� 110

Chapter 23	 Logic gates� 114

Chapter 24	 Boolean algebra� 118

Section 5
Computer organisation and architecture� 125

Chapter 25	 Internal computer hardware� 126

Chapter 26	 The processor� 132

Chapter 27 	 The processor instruction set� 138

Chapter 28	 Assembly language� 142

Chapter 29	 Input-output devices� 148

Chapter 30	 Secondary storage devices� 154

Section 6
Communication: technology and consequences� 158

Chapter 31	 Communication methods� 159

Chapter 32	 Network topology� 164

Chapter 33 	 Client-server and peer-to-peer� 168

Chapter 34	 Wireless networking, CSMA and SSID� 171

Chapter 35	 Communication and privacy� 176

Chapter 36	 The challenges of the digital age� 179

vi

Section 7
Data structures	 187

Chapter 37	 Queues	 188

Chapter 38	 Lists	 194

Chapter 39	 Stacks	 198

Chapter 40	 Hash tables and dictionaries	 202

Chapter 41	 Graphs	 207

Chapter 42	 Trees	 211

Chapter 43	 Vectors	 217

Section 8
Algorithms	 223

Chapter 44	 Recursive algorithms	 224

Chapter 45	 Big-O notation	 229

Chapter 46	 Searching and sorting	 235

Chapter 47	 Graph-traversal algorithms	 243

Chapter 48	 Optimisation algorithms	 249

Chapter 49	 Limits of computation	 254

Section 9
Regular languages	 259

Chapter 50	 Mealy machines	 260

Chapter 51	 Sets	 265

Chapter 52	 Regular expressions	 269

Chapter 53	 The Turing machine	 273

Chapter 54	 Backus-Naur Form	 278

Chapter 55	 Reverse Polish notation	 283

vii

Section 10
The Internet	 287

Chapter 56	 Structure of the Internet	 288

Chapter 57	 Packet switching and routers	 292

Chapter 58	 Internet security	 294

Chapter 59	 TCP/IP, standard application layer protocols	 300

Chapter 60	 IP addresses	 307

Chapter 61	 Client server model	 313

Section 11
Databases and software development	 318

Chapter 62	 Entity relationship modelling	 319

Chapter 63	 Relational databases and normalisation	 323

Chapter 64	 Introduction to SQL	 330

Chapter 65	 Defining and updating tables using SQL	 336

Chapter 66	 Systematic approach to problem solving	 342

Section 12
OOP and functional programming	 346

Chapter 67	 Basic concepts of object-oriented programming	 347

Chapter 68	 Object-oriented design principles	 353

Chapter 69	 Functional programming	 360

Chapter 70	 Function application	 367

Chapter 71	 Lists in functional programming	 371

Chapter 72	 Big Data	 374

References		 379

Appendices and Index

Appendix A	 Floating point form	 380

Appendix B	 Adders and D-type flip-flops	 387

Index		 391

CHAPTER 1 – PROGRAMMING BASICS

5

String-handling functions
Programming languages have a number of built-in string-handling methods or functions. Some of the
common ones in a typical language are:

len(string)	 Returns the length of a string

string.substring(index1,index2)	Returns a portion of string inclusive of the characters at 	
	 each index position

string.find(str)	 Determines if str occurs in a string. Returns index (the 		
	 position of the first character in the string) if found, and -1 	
	 otherwise. In our pseudocode we will assume that string(1)
	 is the first element of the string, though in Python, for 		
	 example, the first element is string(0)

ord("a")	 Returns the integer value of a character (97 in this example)

chr(97)	 Returns the character represented by an integer 		
	 ("a" in this example)

Q3:	 What will be output by the following lines of code?

	 x = "Come into the garden, Maud"
	 y = len(x)
	 z = x.find("Maud")
	 OUTPUT "x= ",x
	 OUTPUT "y= ",y
	 OUTPUT "z= ",z

To concatenate or join two strings, use the + operator.

e.g. “Johnny” + “Bates” = “JohnnyBates”

String conversion operations

int("1")	 converts the character “1” to the integer 1

str(123)	 converts the integer 123 into a string “123”

float("123.456")	 converts the string “123.456” to the real number 123.456

str(123.456)	 converts the real number 123.456 to the string “123.456”

date(year,month,day)	 returns a number that you can calculate with

Converting between strings and dates is usually handled by functions built in to string library modules,
e.g. strtodate("01/01/2016").

Example:

	 date1 ß strtodate("18/01/2015")

	 date2 ß strtodate("30/12/2014")

	 days ß date1 - date2
	 OUTPUT date1, date2, days

This will output

2015-01-18 2014-12-30 19

1-1

SECTION 2 – PROBLEM SOLVING AND THEORY OF COMPUTATION

60

Chapter 12– Finite state machines

Objectives
•	 Understand what is meant by a finite state machine

•	 List some of the uses of a finite state machine

•	 Draw and interpret simple state transition diagrams for finite state machines with no output

•	 Draw a state transition table for a finite state machine with no output and vice versa

What is a finite state machine?
A finite state machine is a model of computation used to design computer programs and sequential logic
circuits. It is not a “machine” in the physical sense of a washing machine, an engine or a power tool, for
example, but rather an abstract model of how a machine reacts to an external event. The machine can
be in one of a finite number of states and changes from one state to the next state when triggered by
some condition or input (say, a signal from a timer).

In a finite state machine:

•	 The machine can only be in one state at a time

•	 It can change from one state to another in response to an event or condition; this is called a
transition. Often this is a switch or a binary sensor.

•	 The Finite State Machine (FSM) is defined by a list of its states and the condition for each transition

There can be outputs linked to the FSM’s state, but in this chapter we will be considering only FSMs with
no output.

Example 1
Draw an FSM to model the states and transitions of a door. The door can be open, closed or locked.
It can change from the state of being open to closed, from closed to locked, but not, say, from locked
to open. (It has to be unlocked first.)

State

Transition

Opened Closed Locked

Open door Unlock door

Close door Lock door

Transition condition

2-12

61

CHAPTER 12 – FINITE STATE MACHINES

Example 2
Draw an FSM to represent a light switch. When the button is pressed, the light goes on. When the button
is pressed again, the light goes off.

There is just one input B to this system: Button pressed (B=1) or Button not pressed (B=0).

B=1

B=0 B=0

Light
off

Light
on

B=1

Notice that in each state, both the transitions B=0 and B=1 are drawn. If the light is off, the transition
B=0 has no effect so the transition results in the same state. Likewise, if the light is on, as long as the
button is not pressed, the light will stay on.

Usage of finite state machines
FSMs are widely used in modelling the design of hardware digital systems, compilers and network
protocols. They are also used in the definition of languages, and to decide whether a particular word
is allowed in the language.

A finite state machine which has no output is also known as a finite state automaton. It has a start
state and a set of accept states which define whether it accepts or rejects finite strings or symbols.
The finite state automaton accepts a string c1, c2…cn if there is a path for the given input from the start
state to an accept state. The language recognised by the finite state automaton consists of all the strings
accepted by it.

If, when you are in a particular state, the next state is uniquely determined by the input, it is a
deterministic final state automaton. All the examples which follow satisfy this condition.

Notation

State

MeaningSymbol

Start state

Accept state

Transition

2-12

SECTION 2 – PROBLEM SOLVING AND THEORY OF COMPUTATION

62

Example 3
Use an FSM to represent a valid identifier in a programming language. The rules for a valid identifier for
this particular language are:

•	 The identifier must start with a lowercase letter

•	 Any combination of letters and lowercase numbers may follow

•	 There is no limit on the length of the identifier

S3

0-9

a-z

a-z, 0-9

a-z, 0-9

S1 S2

In this diagram, the start state S1 is represented by a circle with an arrow leading into it.

The accept state S2 is denoted by a double circle.

S3 is a “dead state” because having arrived here, the string can never reach the accept state.

Each character of the input string is input sequentially to the FSM and if the last character reaches
the final state S2 (the accept state), the string is valid and is accepted. If it ends up anywhere else
the string is invalid.

Note that there can only be one starting state but there may be more than one accept state (or no
accept states).

Q1: 	Which of the following strings is valid and accepted by this finite state machine?
	 (i) a     (ii) bba     (iii) abbaa     (iv) bbbb

a

a

b

b

b

aS0 S1

S2

2-12

SECTION 3 – DATA REPRESENTATION

96

What is encryption?
Encryption is the transformation of data from one form to another to prevent an unauthorised third party
from being able to understand it. The original data or message is known as plaintext. The encrypted
data is known as ciphertext. The encryption method or algorithm is known as the cipher, and the
secret information to lock or unlock the message is known as a key.

The Caesar cipher and the Vernam cipher offer polar opposite examples of security. Where the Vernam
offers perfect security, the Caesar cipher is very easy to break with little or no computational power.
There are many others methods of encryption – some of which may take many computers, many years
to break, but these are still breakable and the principles behind them are similar.

The Caesar cipher
Julius Caesar is said to have used this method to keep messages secure. The Caesar cipher (also
known as a shift cipher) is a type of substitution cipher and works by shifting the letters of the
alphabet along by a given number of characters; this parameter being the key. Below is an example of
a shift cipher using a key of 5. (An algorithm for this cipher is given as an example on page 46.)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

â â

F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

Q2:	 Using the table above, what is the ciphertext for ‘JULIUS CAESAR’ using a shift of 5?

Q3:	 What word can be translated from the following ciphertext, which uses a key of -2: ZYBECP

You will no doubt be able to see the ease with which you might be able to decrypt a message using
this system.

DGYDQFH WR ERUGHU DQG DWWDFN DW GDZQ
Even if you had to attempt a brute force attack on the message above, there are only 25 different
possibilities (since a shift of zero means the plaintext and the ciphertext are identical). Otherwise you
might begin by guessing the likelihood of certain characters first and go from there. Using cryptanalysis
on longer messages, you would quickly find the most common ciphertext letter and could start by
assuming this was an E, for example, or perhaps an A. (Hint.)

Cryptanalysis and perfect security
Other ciphers that use non-random keys are open to a cryptanalytic attack and can be solved given
enough time and resources. Even ciphers that use a computer-generated random key can be broken
since mathematically generated random numbers are not actually random; they just appear to be so. A
truly random sequence must be collected from a physical and unpredictable phenomenon such as white
noise, the timing of a hard disk read/write head or radioactive decay. A truly random key must be used
with a Vernam cipher to ensure it is mathematically impossible to break.

The Vernam cipher
The Vernam cipher, invented in 1917 by the scientist Gilbert Vernam, is one implementation of a class
of ciphers known as one-time pad ciphers, all of which offer perfect security if used properly. All others
are based on computational security and are theoretically discoverable given enough time, ciphertext
and computational power. Frequency analysis is a common technique used to break a cipher.

3-18

97

CHAPTER 18 – DATA COMPRESSION AND ENCRYPTION ALGORITHMS

One-time pad
To provide perfect security, the encryption key or one-time pad must be equal to or longer in characters
than the plaintext, be truly random and be used only once. The sender and recipient must meet in person
to securely share the key and destroy it after encryption or decryption. Since the key is random, so will
be the distribution of the characters meaning that no amount of cryptanalysis will produce meaningful
results.

The bitwise exclusive or XOR
A Boolean XOR operation is carried out between the binary representation of each character of the
plaintext and the corresponding character of the one-time pad. The XOR operation is covered in Chapter
23 and you may want to refer to this to verify the output for any combination of 0 and 1. Use the ASCII
chart on page 73 for reference.

Plaintext: M Key: + XOR: f

1 0 1

0 1 1

0 0 0

1 1 0

1 0 1

0 1 1

1 1 0

Q4:	� Using the ASCII chart and the XOR operator, what ciphertext character will be produced from
the letter E with the key w?

Using this method, the message “Meet on the bridge at 0300 hours” encrypted using a one-time pad
of +tkiGeMxGvnhoQ0xQDIIIVdT4sIJm9qf will produce the ciphertext:

The encryption process will often produce strange symbols or unprintable ASCII characters as in the
above example, but in practice it is not necessary to translate the encrypted code back into character
form, as it is transmitted in binary. To decrypt the message, the XOR operation is carried out on the
ciphertext using the same one-time pad, which restores it to plaintext.

Exercises
1.	 Explain the difference between lossy and lossless data compression.� [2]

2.	� Run-length encoding (RLE) is a pattern substitution compression algorithm.
Data is stored in the format (colour,run) where 0 = White, 1 = Black.

		 (0,1),(1,5),(0,1),

		 (1,7),

		 (1,1),(0,2),(1,1),(0,2),(1,1),

		 (1,7),

		 (0,1),(1,1),(0,1),(1,1),(0,1),(1,1),(0,1),

		 (0,1),(1,1),(0,1),(1,1),(0,1),(1,1),(0,1),

		 (0,1),(1,1),(0,3),(1,1),(0,1)

3-18

SECTION 5 – COMPUTER ORGANISATION AND ARCHITECTURE

140

5-27

Assembly language instructions
Machine code was the first “language” used to enter programs by early computer programmers. The next
advance in programming was to use mnemonics instead of binary codes, and this was called assembly
code or assembly language. Each assembly language instruction translates into one machine code
instruction.

Different mnemonic codes are used by different manufacturers, so there are several versions of assembly
language.

Typical statements in machine code and assembly language are:

Machine code Assembly code Meaning

0100 1100 LDA #12 Load the number 12 into the accumulator

0010 0010 ADD #2 Add the number 2 to the contents of the accumulator

0111 1111 STO 15 Store the result from the accumulator in location 15

The # symbol in this assembly language program signifies that the immediate addressing mode is being
used.

Q5:	� Write a statement in a high level language which performs an operation equivalent to the
three statements in the above machine code program, with the result being stored in a
location called TOTAL.

Q6:	� Write a machine code program, and an equivalent assembly language program, to add the
contents of locations 10 and 11 and store the result in location 14.

Exercises
1.	� A computer with a 16-bit word length uses an instruction set with 6 bits for the opcode, including

the addressing mode.

	 (a)	 What is an instruction set?� [1]

	 (b)	 How many instructions could be included in the instruction set of this computer?� [1]

	 (c)	 What is the largest number that can be used as data in the instruction?� [1]

	 (d)	 What would be the effect of increasing the space allowed for the opcode by 2 bits?� [2]

	 (e)	 What would be the benefits of increasing the word size of the computer?� [2]

2.	 The high-level language statement

			 X = Y + 6

	 is to be written in assembly language.

	� Complete the following assembly language statements, which are to be the equivalent of the above
high level language statement. The LOAD and STORE instructions imply the use of the accumulator
register.

		 LOAD ……………………………
		 ……………………………………#6
		 STORE …………………………� [3]

SECTION 6 – COMMUNICATION: TECHNOLOGY AND CONSEQUENCES

162

6-31

Parity
Computers use either even or odd parity. In an even parity machine, the total number of ‘on’ bits in every
byte (including the parity bit) must be an even number. When data is transmitted, the parity bit is set at
the transmitting end and parity is checked at the receiving end, and if the wrong number of bits are ‘on’,
an error has occurred. In the diagram below the parity bit is the most significant bit (MSB).

Parity bit in even parity system

Q2: 	�The ASCII codes for P and Q are 1010000 and 1010001 respectively. In an even parity
transmission system, what will be the value of the parity bit for the characters P and Q?

Synchronous transmission
Using synchronous transmission, data is transferred at regular intervals that are timed by a clocking
signal, allowing for a constant and reliable transmission for time-sensitive data, such as real-time video
or voice. Parallel communication typically uses synchronous transmission – for example, in the CPU, the
clock emits a signal at regular intervals and transmissions along the address bus, data bus and control
bus start on a clock signal, which is shared by both sender and receiver.

Asynchronous transmission
Using asynchronous transmission, one byte at a time is sent, with each character being preceded by
a start bit and followed by a stop bit.

The start bit alerts the receiving device and synchronises the clock inside the receiver ready to receive the
character. The baud rate at the receiving end has to be set up to be the same as the sender’s baud rate
or the signal will not be received correctly. The stop bit is actually a “stop period”, which may be arbitrarily
long. This allows the receiver time to identify the next start bit and gives the receiver time to process the
data before the next value is transmitted.

A parity bit is also usually included as a check against incorrect transmission. Thus for each character
being sent, a total of 10 bits is transmitted, including the parity bit, a start bit and a stop bit. The start
bit may be a 0 or a 1, the stop bit is then a 1 or a 0 (always different). A series of electrical pulses is sent
down the line as illustrated below:

Low

High

Start
bit

Parity
bit

Stop
bit

1
Bit 0

1
Bit 2

1
Bit 5

1
Bit 7

0
Bit 9

0
Bit 8

0
Bit 6

0
Bit 4

0
Bit 3

0
Bit 1

Character code for ‘R’

Vo
lta

ge
 (V

)

Asynchronous transmission

Parity

01000001

Least Significant Bit (LSB)

162

Chapter 41 – Graphs

207

Chapter 41 – Graphs

Objectives

•	 Be aware of a graph as a data structure used to represent complex relationships

•	 Be familiar with typical uses for graphs

•	 Be able to explain the terms: graph, weighted graph, vertex/node, edge/arc, undirected graph,
directed graph

•	 Know how an adjacency matrix and an adjacency list may be used to represent a graph

•	 Be able to compare the use of adjacency matrices and adjacency lists

Definition of a graph
A graph is a set of vertices or nodes connected by edges or arcs. The edges may be one-way or
two way. In an undirected graph, all edges are bidirectional. If the edges in a graph are all one-way, the
graph is said to be a directed graph or digraph.

Bury St Edmunds

57

10

931 56

15
21

45

25

Framlingham

Wickham Market

WoodbridgeIpswich

Stowmarket

Figure 41.1: An undirected graph with weighted edges

The edges may be weighted to show there is a cost to go from one vertex to another as in Figure 41.1.
The weights in this example represent distances between towns. A human driver can find their way
from one town to another by following a map, but a computer needs to represent the information about
distances and connections in a structured, numerical representation.

A

B

C

F

D

E

Figure 41.2: A directed, unweighted graph

7-41

Section 7 – Data structures

208

Implementing a graph
Two possible implementations of a graph are the adjacency matrix and the adjacency list.

The adjacency matrix
A two-dimensional array can be used to store information about a directed or undirected graph. Each
of the rows and columns represents a node, and a value stored in the cell at the intersection of row i,
column j indicates that there is an edge connecting node i and node j.

A B C D E F

A 5 4

B 6 3

C 8

D 2

E

F

In the case of an undirected graph, the adjacency matrix will be symmetric, with the same entry in row
0 column 1 as in row 1 column 0, for example.

An unweighted graph may be represented with 1s instead of weights, in the relevant cells.

Q1:	 Draw an adjacency matrix to represent the weighted graph shown in Figure 41.1.

Advantages and disadvantages of the adjacency matrix
An adjacency matrix is very convenient to work with, and adding an edge or testing for the presence of
an edge is very simple and quick. However, a sparse graph with many nodes but not many edges will
leave most of the cells empty, and the larger the graph, the more memory space will be wasted. Another
consideration is that using a static two-dimensional array, it is harder to add or delete nodes.

The adjacency list
An adjacency list is a more space-efficient way to implement a sparsely connected graph. A list of all the
nodes is created, and each node points to a list of all the adjacent nodes to which it is directly linked. The
adjacency list can be implemented as a list of dictionaries, with the key in each dictionary being the node
and the value, the edge weight.

The graph above would be represented as follows:

A

B

C

D

{B:5, C:4}

{E:2}

{F:8}

{C:6, D:3}

E

F {}

{}

A

B

C

F

D

5

4

8

6

3

2

E

7-41

Chapter 47 – Graph-traversal algorithms

247

Applications of depth-first search
Applications of the depth-first search include the following:

•	 In scheduling jobs where a series of tasks is to be performed, and certain tasks must be completed
before the next one begins.

•	 In solving problems such as mazes, which can be represented as a graph

Finding a way through a maze
A depth-first search can be used to find a way out of a maze. Junctions where there is a choice of route
in the maze are represented as nodes on a graph.

A

D

E

C

B

X

A

B

D

C

E

X

Q1:	 (a)	 Redraw the graph without showing the dead ends.

	 (b)	 State the properties of this graph that makes it a tree.

	 (c)	� Complete the table below to show how the graph would be represented using an
adjacency matrix.

A B C D E X

A

B

C

D

E

X

Q2:	 Draw a graph representing the following maze. Show the dead ends on your graph.

XA

CB

E

F

D

8-47

Chapter 53 – The Turing machine

273

Chapter 53 – The Turing machine

Objectives
•	 Know that a Turing machine can be viewed as a computer with a single fixed program, expressed using

o	 a finite set of states in a state transition diagram

o	 a finite alphabet of symbols

o	 an infinite tape with marked off squares

o	 a sensing read-write head that can travel along the tape, one square at a time

•	 Understand the equivalence between a transition function and a state transition diagram

•	 Be able to:

o	 represent transition rules using a transition function

o	 represent transition rules using a state transition diagram

o	 hand-trace simple Turing machines

•	 Explain the importance of Turing machines and the Universal Turing machine to the subject of
computation

Alan Turing
Alan Turing (1912–1954) was a British computer scientist and mathematician,
best known for his work at Bletchley Park during the Second World War.
While working there, he devised an early computer for breaking German
ciphers, work which probably shortened the war by two or more years and
saved countless lives.

Turing was interested in the question of computability, and the answer
to the question “Is every mathematical task computable?” In 1936 he
invented a theoretical machine, which became known as the Turing
machine, to answer this question.

The Turing machine
The Turing machine consists of an infinitely long strip of tape divided into squares. It has a read/write
head that can read symbols from the tape and make decisions about what to do based on the contents
of the cell and its current state.

Essentially, this is a finite state machine with the addition of an infinite memory on tape. The FSM
specifies the task to be performed; it can erase or write a different symbol in the current cell, and it can
move the read/write head either left or right.

State S1

1 0 1 0 0 0 0 1 □ □1 1

Read / Write head

Infinite tape

The Turing machine is an early precursor of the modern computer, with input, output and a program
which describes its behaviour. Any alphabet may be defined for the Turing machine; for example a binary
alphabet of 0, 1 and □ (representing a blank), as shown in the diagram above.

9-53

Section 9 – Regular languages

276

The finite state machine corresponding to the state transition diagram is given below.

S0 S1 S2 S3

□,□,L 0,1,L
□,1,R

1,0,L
1,1,R
0,0,R

1,1,R
0,0,R

□,□,L

Q1:	 Trace the computation of the Turing machine if the tape starts with the data 11 as shown below.

S0

...... 1 1 □□□□

(You will need to draw ten representations of the tape to complete the computation.)

Transition functions
The transition rules for any Turing machine can be expressed as a transition function d. The rules are
written in the form

	 d (Current State, Input symbol) = (Next State, Output symbol, Movement).

Thus the rule

	 d (S1, 0) = (S2, 1, L)

means “IF the machine is currently in state S1 and the input symbol read from the tape is 0, THEN write a
1 to the tape, and move left and change state to S2”.

Q2:	 Looking at the state transition diagram above, write the transition rules for inputs of 0, 1 and □
when the machine is in state S0.

The universal Turing machine
A Turing machine can theoretically represent any computation.

A, B 

A, B 

 A + B

 A * B

+

*

Each machine has a different program to compute the desired operation. However, the obvious problem
with this is that a different machine has to be created for each operation, which is clearly impractical.

Turing therefore came up with the idea of the Universal Turing machine, which could be used to
compute any computable sequence. He wrote: “If this machine U is supplied with the tape on the
beginning of which is written the string of quintuples separated by semicolons of some computing
machine M, then U will compute the same sequence as M.”

9-53

Chapter 68 – Object-oriented design principles

353

Chapter 68 – Object-oriented design principles

Objectives

•	 Understand concepts of association, composition and aggregation

•	 Understand the use of polymorphism and overriding

•	 Be aware of object-oriented design principles:

◦◦ encapsulate what varies

◦◦ favour composition over inheritance

◦◦ program to interfaces, not implementation

•	 Be able to draw and interpret class diagrams

Association, aggregation and composition
Recall that inheritance is based on an “is a” relationship between two classes. For example, a cat
“is a(n)” animal, a car “is a” vehicle. In a similar fashion, association may be loosely described as a
“has a” relationship between classes. Thus a railway company may be associated with the engines and
carriages it owns, or the track that it maintains. A teacher may be associated with a form bi-directionally
– a teacher “has a” student, and a student “has a” teacher. However, there is no ownership between
objects and each has their own lifecycle, and can be created and deleted independently.

Association aggregation, or simply aggregation, is a special type of more specific association. It can
occur when a class is a collection or container of other classes, but the contained classes do not have a
strong lifecycle dependency on the container. For example, a player who is part of a team does not cease
to exist if the team is disbanded.

Aggregation may be shown in class diagrams using a hollow diamond shape between the two classes.

Team Player

Class diagram showing association aggregation

Composition aggregation, or simply composition, is a stronger form of aggregation. If the container is
destroyed, every instance of the contained class is also destroyed. For example if a hotel is destroyed,
every room in the hotel is destroyed.

Composition may be shown in class diagrams using a filled diamond shape. The diamond is at the end of
the class that owns the creational responsibility.

Hotel Room

Class diagram showing composition aggregation

Q1:	 Specify whether each of the following describe association aggregation or composition
aggregation.

(a)	 Zoo and ZooAnimal

(b)	 RaceTrack and TrackSection

(c)	 Department and Teacher

12-68

Section 12 – OOP and functional programming

354

Polymorphism
Polymorphism refers to a programming language’s ability to process objects differently depending on
their class. For example, in the last chapter we looked at an application that had a superclass Animal,
and subclasses Cat and Rodent. All objects in subclasses of Animal can execute the methods
moveLeft, moveRight, which will cause the animal to move one space left or right.

Animal

Rodent

Mouse Beaver

Cat

Moves
one space

Moves
three spaces

Moves
two spaces

We might decide that a cat should move three spaces when a moveLeft or moveRight message is
received, and a Rodent should move two spaces. We can define different methods within each of the
classes to implement these moves, but keep the same method name for each class.

Defining a method with the same name and formal argument types as a method inherited from a
superclass is called overriding. In the example above, the moveLeft method in each of the Cat and
Rodent classes overrides the method in the superclass Animal.

Q2:	 Suppose that tom is an instance of the Cat class, and jerry is an instance of the Mouse
class. What will happen when each of these statements is executed?

tom.moveRight()

jerry.moveRight()

Q3:	 Looking at the diagram above, what changes do you need to make so that bertie, an instance
of the Beaver class, moves only one space when given a moveRight() message?

Class definition including override
Class definitions for the classes Animal and Cat will be something like this:

Animal = Class
			 Public
				 Procedure moveLeft
				 Procedure moveRight	
			 Protected
				 Position: Integer
			 End
Cat = Subclass (Animal)
			 Public
				 Procedure moveLeft (Override)
				 Procedure moveRight (Override)
				 Procedure pounce
			 Private
				 Name: String
			 End

Note: The 'Protected' access modifier is described on page 356.

12-68

INDEX– AQA A LEVEL COMPUTER SCIENCE

391

A
absolute error, 385
abstract data types, 188
abstraction, 52, 108

data, 57
functional, 56
problem, 57
procedural, 55

accumulator, 132, 138
active tags, 152
ADC, 90
adders

concatenating, 387
address bus, 127, 128, 135
addressing mode

direct, 139
immediate, 139

adjacency
list, 208
matrix, 208

ADT, 188
aggregation, 353
agile modelling, 342
Alan Turing, 273
algorithm, 2
ALU, 132
Amazon, 179
analogue

data, 89
to digital conversion, 90

analysis, 34, 342
AND, 10, 144
AND gate, 115
API, 313
appending, 372
application layer, 300, 301
Application Programming

Interface, 103, 313
application software, 102
arithmetic logic unit, 127, 132
arithmetic operations, 3, 127, 143
ARPANET, 288
array, 17, 19, 190
ASCII, 73
assembler, 110
assembly language, 108,

109, 140, 142
association, 353
asymmetric encryption, 296

asynchronous transmission, 162
attributes, 319, 347
audio bit depth, 88
automation, 58
automaton, 61

B
backing store management, 104
Backus-Naur form, 278
bandwidth, 161
barcode reader, 149
barcodes

2-D, 148
linear, 148

base case, 224
baud rate, 161
behaviours, 347
Big Data, 374
Big-O notation, 229, 231
binary

addition, 77
converting to and from decimal, 69
file, 31
fixed point, 80
floating point, 81
multiplication, 78
negative numbers, 79
number system, 69
subtraction, 80

binary expression tree, 286
binary search, 236

recursive algorithm, 237
tree, 212

binary search tree, 215
binary tree search, 238
bit, 72

depth, 88
rate, 161

bitmap image, 83
block-structured languages, 39
Blu-Ray, 155
BNF, 278
Boolean algebra, 120

Absorption rules, 120
Associative rules, 120
Commutative rules, 120
Distributive rules, 120

Boolean operators, 10

breadth-first
search, 248
traversal, 245, 246

bridges of Königsberg, 54
browser, 305
bubble sort, 44, 238
bus, 127

address, 128
control, 128
data, 128

byte, 72
bytecode, 112

C
cache memory, 135
Caesar cipher, 96
call stack, 200, 225
camera-based readers, 150
cardinality, 265
carry, 78
Cartesian product, 266
CASE, 10
CCD reader, 150
CD-ROM, 155
Central Processing Unit, 126
check digit, 75
checksum, 75, 292
ciphertext, 96, 295
CIR, 133
circular queue, 190
class, 348
classful addressing, 308
classless addressing, 308
client-server

database, 339
model, 313
network, 168

clock speed, 135
CMOS, 151
co-domain, 360
collision, 202

resolution, 204
Colossus computer, 106
colour depth, 83
comments, 3
commitment ordering, 340
compact representation, 266
compare and branch

instructions, 143

Index

Index

INDEX– AQA A LEVEL COMPUTER SCIENCE

392

compiler, 110, 112
composite data types, 188
composition, 57, 353
compression

dictionary-based, 95
lossless, 93
lossy, 93

computability, 273
computable problems, 256
computational thinking, 35, 52
Computer Misuse Act, 183
constant, 6
constructor, 348
control bus, 127, 128
control unit, 127, 132
convex combination, 220
Copyright, Designs and

Patents Act (1988), 183
CPU, 126
CRC, 292
CRUD, 314
cryptanalysis, 96, 97
CSMA/CA, 173
CSMA/CD, 166
CSS Object Model, 305
CSSOM, 305
current instruction register, 133
cyber-attack, 177
cyber-bullying, 181
cyclical redundancy check, 292

D
DAC, 90
data

analogue, 89
boundary, 48
bus, 127, 128, 135
communication, 159
digital, 89
erroneous, 48
normal, 48
structures, 17
transfer operations, 143
types, 3
user-defined type, 29

data abstraction, 188
data packets, 292
Data Protection Act (1998), 183
database

defining a table, 336
locking, 340
normalisation, 324
relational, 323

De Morgan’s laws, 118
decomposition, 57
denary, 80
depth-first

traversal, 243
design, 34, 343
destruction of jobs, 180
dictionary, 205
dictionary based compression, 95
digital

camera, 151
certificate, 297
data, 89
signature, 296
to analogue conversion, 90

digraph, 207
Dijkstra’s algorithm, 249, 293
directed graph, 207
disk defragmenter, 101
divide and conquer, 43
DNS, 290
Document Object Model, 305
DOM, 305
domain, 360
domain name, 289, 290

fully qualified, 291
Domain Name System, 290
dot product, 220
DPI, 83
driverless cars, 182
dry run, 49
D-type flip-flop, 388, 389
dual-core processor, 134
dynamic data structure, 190
dynamic filtering, 295

E
EAN, 76
early computers, 106
eBay, 179
edge, 207
elementary data types, 17, 188
embedded systems, 130
encapsulating what varies, 357
encapsulation, 188, 350

encryption, 96, 295
asymmetric, 296
private key, 296
public key, 296
symmetric, 296

Enigma code, 106
entity, 319

identifier, 319
relationship diagram, 320, 321

error checking, 74
ethics, 182
evaluating a program, 46
evaluation, 50, 344
event messages, 91
exbi, 72
exponent, 381
exponential function, 230

F
fact-based model, 377
fetch-execute cycle, 134
field, 29
FIFO, 188
file, 29

binary, 31
server, 168
text, 29

File Transfer Protocol, 303
filter, 370
finite set, 265
finite state

automaton, 61, 260
machine, 60, 260

firewall, 294
first generation language, 53
First In First Out, 188
First normal form, 324
first-class object, 362
fixed point, 385
floating point, 385

binary numbers, 381
fold (reduce), 370
folding method, 203
FOR … ENDFOR, 15
foreign key, 320, 324
FQDN, 291
frequency of a sound, 90
FSM, 260
FTP, 303

Index

INDEX– AQA A LEVEL COMPUTER SCIENCE

393

full adder, 387
Fully Qualified Domain Names, 291
function, 360

application, 362
higher-order, 367

functional
composition, 364
programming, 360

functions, 5, 21, 230
string-handling, 5

G
Galois field, 220
gate

NOT, AND, OR, 114
XOR, NAND, NOR, 116

gateway, 293
general purpose registers, 132
getter messages, 349
GF(2), 220
gibi, 72
Google, 179

Street View, 178
graph, 207

schema, 377
theory, 55
traversals, 243

half-adder, 387
Halting problem, 257
hard disk, 154
hardware, 100
Harvard architecture, 130
hash table, 202
hashing algorithm, 202
folding method, 203

H
Haskell, 360, 361
heuristic methods, 256
hexadecimal, 70
hierarchy chart, 40
higher-order function, 367
high-level languages, 109
HTTP request methods, 314

I
I/O controller, 127, 129
IF … THEN, 8
image resolution, 83

immutable, 363, 372
imperative language, 109
implementation, 344
infinite set, 266
infix expression, 284
information hiding, 54, 57, 188, 350
inheritance, 351
in-order traversal, 214, 225, 226
Instagram, 181
instantiation, 348
instruction set, 107, 110
interface, 23, 129, 357
Internet

registrars, 289
registries, 290
security, 172, 294
Service Providers, 289

Internet of things, 182
interpreter, 111, 112
interrupt, 136

handling, 105
Interrupt Service Routine, 136
intractable problems, 255
IP address, 291

private, 309
public, 309
structure, 307

irrational number, 68
ISBN, 76
ISP, 289
Iteration, 13

J
Java Virtual Machine, 112
JSON, 315, 316

K
kibi, 72
kilobyte, 72

L
LAN, 164
laser

printer, 152
scanner, 150

latency, 161
legislation, 183
library programs, 101
limits of computation, 254

linear function, 230
linear search, 235
link layer, 300, 301
linking database tables, 324
list, 194, 371

appending to, 372
prepending to, 372

loader, 103
local area network, 164
logarithmic function, 231
logic gates, 114
logical bitwise operators, 144
logical operations, 127
low-level language, 108

M
MAC address, 167, 302
machine code, 106

instruction format, 138
mail server, 304
majority voting, 75
malicious software, 297
malware, 297
mantissa, 381
many-to-many relationship, 321, 326
map, 369
MAR, 133
maze, 247
MBR, 133
Mealy machines, 260, 261
mebi, 72
Media Access Control, 301
memory

address register, 133
buffer register, 133
data register, 133
management, 104

merge sort, 239
space complexity, 241
time complexity, 241

metadata, 84
meta-languages, 278
MIDI, 91
metadata, 91
mnemonics, 142
modelling data requirements, 343
modular programming, 25
module, 39
modulo 10 system, 76

Index

394

N
NAND gate, 116
NAT, 310
natural number, 68, 265
nested loops, 15
network

client-server, 168
interface cards, 294
layer, 300, 301
peer-to-peer, 169
security, 172, 294
station, 171

Network Address
Translation, 310, 311

nibble, 72
NIC, 294
node, 207
non-computable problems, 256
NOR gate, 116
normal form

first1NF, 324
second 2NF, 326
third 3NF, 326

normalisation, 327
of databases, 324
of floating point number, 382

NOT, 10, 11, 144
gate, 114

number
irrational, 68
natural, 68
ordinal, 68
rational, 68
real, 68

Nyquist’s theorem, 90

O
object code, 110
object-oriented programming, 347
one-time pad, 97
opcode, 106, 138
operand, 106, 138
operating system, 100, 103
operation code, 106, 138
optical disk, 155
OR, 10, 144

gate, 115
ORDER BY, 332
ordinal number, 68

oscillator, 388
overflow, 78, 386
override, 354
Oyster card, 152

P
packet filters, 294
packet switching, 292
PageRank algorithm, 209
parallel data transmission, 160
parity, 162

bit, 74
parity bit checker, 221
partial dependency, 326
partial function application, 368
passive tags, 152
PC, 133
pebi, 72
peer-to-peer network, 169
pen-type reader, 149
peripheral management, 105
permutations, 231
phishing, 299
piracy, 170
pixel, 83
plaintext, 96, 295
platform independence, 112
polymorphism, 354
polynomial function, 230
polynomial-time solution, 255
POP3, 304
port forwarding, 311
Post Office Protocol (v3), 304
postfix

expression, 284
notation, 283

post-order traversal, 214, 227
precedence rules, 283
pre-order traversal, 213, 227
prepending, 372
primary key, 319
priority queue, 192
private, 348

key encryption, 296
modifier, 356

problem solving strategies, 36
procedural programming, 347
procedure, 21
procedure interface, 56

processor, 127
instruction set, 138
performance, 134
scheduling, 104

program
constructs, 8
counter, 133

programming paradigm, 360
proper subset, 266
protected access modifier, 356
protocol, 163
prototype, 343
proxy server, 294, 295
pseudocode, 2
public, 348

modifier, 356

Q
quad-core processor, 134
queue, 188

operations, 189
Quick Response (QR) code, 148

R
Radio Frequency Identification, 151
range, 79
raster, 83
rational number, 68, 265
real number, 265
record, 29
record locking, 340
recursion, 224
recursive algorithm, 237
reference variable, 349
referential transparency, 363
register, 127
regular expressions, 269
regular language, 270
rehashing, 204
relation, 323
relational database, 320, 323
relational operators, 8
relationships, 320
relative error, 385
REPEAT … UNTIL, 14
Representational State Transfer, 314
resolution, 83
resource management, 100
REST, 314

Index

INDEX– AQA A LEVEL COMPUTER SCIENCE

395

Reverse Polish notation, 283
RFID, 151
RLE, 94
root node, 211
rooted tree, 211
rounding errors, 384
router, 171, 293
RTS/CTS, 173
Run Length Encoding, 94

S
sample resolution, 88
scaling vectors, 220
Second normal form, 326
secondary storage, 154
Secure Shell, 304
SELECT .. FROM .. WHERE, 330
selection statement, 8
serial data transmission, 159
serialisation, 340
server

database, 168
file, 168
mail, 168
print, 168
web, 168

Service Set Identification, 172
set, 265

compact representation, 266
comprehension, 266
countable, 266
countably infinite, 266
difference, 267
intersection, 267
union, 267

setter messages, 349
side effects, 363
simulation, 188
Snowden, Edward, 176
social engineering, 299
software, 34, 100, 102

application, 102
bespoke, 102
development, 342
off-the-shelf, 102
system, 100
utility, 101

solid-state disk, 156
sorting algorithms, 44, 238

sound sample size, 89
source code, 110
space complexity, 241
spam filtering, 299
specifier

private, 356
protected access, 356
public, 356

SQL, 330, 338
SSD, 156
SSH, 304
SSID, 172
stack, 198

call, 200
frame, 201
overflow, 200

underflow, 200
state, 347

transition diagrams, 260
transition table, 261

stateful inspection, 295
stateless, 363
static data structure, 190
static filtering, 294
Static IP addressing, 310
stored program concept, 129
string conversion, 5
structured programming, 39
Structured Query Language, 330
subclass, 351
subnet mask, 308, 310
subnetting, 309
subroutines, 21

advantages of using, 25
user-written, 22
with interfaces, 23

subset, 266
substitution cipher, 96
superclass, 351
symmetric encryption, 296
synchronous transmission, 162
synonym, 202
syntax diagrams, 280
syntax error, 111
system

bus, 127
clock, 132
vulnerabilities, 298

T
table structure, 336
TCP/IP protocol stack, 300
tebi, 72
Telnet, 304
test plan, 48
testing, 48, 344
text file, 29
thick-client computing, 316
thin-client computing, 316
Third normal form, 326
Tim Berners-Lee, 288
time complexity, 229, 233, 235, 236

of merge sort, 241
timestamp ordering, 340
topology

logical, 166
physical, 166
physical bus, 164
physical star, 165

trace table, 14, 49, 107
tractable problems, 255
transition functions, 276
translators, 101
transmission rate, 161
transport layer, 300, 301
travelling salesman problem, 254, 256
traversing a binary tree, 213
tree, 211

child, 211
edge, 211
leaf node, 211
node, 211
parent, 211
root, 211
subtree, 211
traversal algorithms, 225

trojans, 298
trolls, 181
truth tables, 114
TSP, 256
Turing machine, 273
two’s complement, 80
typeclasses, 365

U
underflow, 386
undirected graph, 207
Unicode, 74

Index

INDEX– AQA A LEVEL COMPUTER SCIENCE

396

Uniform Resource Locators, 289
union, 267
universal Turing machine, 276
URLs, 289
user generated content, 181
user interface, 100
user-defined data type, 29
utility software, 101

V
variables, 6

global, 24
local, 24

vector, 217
adding and
subtracting, 218
convex
combination, 220
dot product, 220
scaling, 220

vector graphics, 85
Vernam cipher, 96
vertex, 207
virtual memory, 104
virus checker, 101
viruses, 297
von Neumann, 100

machine, 129

W
WAP, 171
web server, 305
WebSocket protocol, 314
weighted graph, 207
WHILE … ENDWHILE, 13
whitelist, 172
Wi-Fi, 171
Protected Access, 172
Wilkes, Maurice, 100
WinZip, 101
wireless network

access point, 171
interface controller, 171

word, 128
word length, 135
World Wide Web, 288
worms, 297
WPA, 172
WWW, 288

X
XML, 315, 316
XOR, 11, 144

gate, 116

Y
yobi, 72

Z
zebi, 72

Index

The aim of this textbook is
to provide a detailed
understanding of each topic
of the new AQA A Level
Computer Science
specifi cation. It is presented in
an accessible and interesting
way, with many in-text
questions to test students’
understanding of the material
and their ability to apply it.

The book is divided into 12
sections, each containing
roughly six chapters. Each
chapter covers material that
can comfortably be taught
in one or two lessons. It will
also be a useful reference and
revision guide for students
throughout the A Level course.
Two short appendices contain
A Level content that could
be taught in the fi rst year of
the course as an extension to
related AS topics.

Each chapter contains
exercises, some new and
some from past examination
papers, which can be set as
homework. Answers to all
these are available to teachers
only, in a Teachers Supplement
which can be ordered from
our website
www.pgonline.co.uk

About the authors
Pat Heathcote is a well-known
and successful author of
Computer Science textbooks.
She has spent many years as a
teacher of A Level Computing
courses with signifi cant
examining experience. She has
also worked as a programmer
and systems analyst, and was
Managing Director of Payne-
Gallway Publishers until 2005.

Rob Heathcote has many
years of experience teaching
Computer Science and is
the author of several popular
textbooks on Computing. He
is now Managing Director of
PG Online, and writes and
edits a substantial number of
the online teaching materials
published by the company.

Computer
Science

AQA AS and A Level

Computer
Science

AQA AS and A Level

