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Preface
The aim of this textbook is to provide detailed coverage of the topics in the new AQA A Level Computer 
Science specification.

The book is divided into six sections and within each section, each chapter covers material that can 
comfortably be taught in one or two lessons. 

In the second year of this course there is a strong emphasis on algorithms and data structures, and these 
are covered in the first two sections of the book. These are followed by sections on regular languages, 
the Internet and databases. 

Object Oriented Programming and functional programming are covered in the final section, which 
describes basic theoretical concepts in OOP, as well as providing some practical exercises using the 
functional programming language Haskell. Lists, the fact-based model and ‘Big Data’ are all described 
and explained.

Two short appendices contain A Level content that could be taught in the first year of the course as an 
extension to related AS topics.

The OOP concepts covered may also be helpful in the coursework element of the A Level course. 

Each chapter contains exercises and questions, some new and some from past examination papers. 
Answers to all these are available to teachers only in a Teacher’s Supplement which can be ordered from 
our website www.pgonline.co.uk.

Approval message from AQA

This textbook has been approved by AQA for use with our qualification. This means that we have 
checked that it broadly covers the specification and we are satisfied with the overall quality. Full details of 
our approval process can be found on our website. 

We approve textbooks because we know how important it is for teachers and students to have the right 
resources to support their teaching and learning. However, the publisher is ultimately responsible for the 
editorial control and quality of this book. 

Please note that when teaching the A Level Computer Science course, you must refer to AQA’s 
specification as your definitive source of information. While this book has been written to match the 
specification, it cannot provide complete coverage of every aspect of the course. 

A wide range of other useful resources can be found on the relevant subject pages of our  
website: www.aqa.org.uk.
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Chapter 41 – Graphs

Objectives

• Be aware of a graph as a data structure used to represent complex relationships

• Be familiar with typical uses for graphs

• Be able to explain the terms: graph, weighted graph, vertex/node, edge/arc, undirected graph, 
directed graph

• Know how an adjacency matrix and an adjacency list may be used to represent a graph

• Be able to compare the use of adjacency matrices and adjacency lists

Definition of a graph
A graph is a set of vertices or nodes connected by edges or arcs.  The edges may be one-way or 
two way. In an undirected graph, all edges are bidirectional. If the edges in a graph are all one-way, the 
graph is said to be a directed graph or digraph.  

Bury St Edmunds

57

10

931 56

15
21

45

25

Framlingham

Wickham Market

WoodbridgeIpswich

Stowmarket

Figure 41.1: An undirected graph with weighted edges

The edges may be weighted to show there is a cost to go from one vertex to another as in Figure 41.1. 
The weights in this example represent distances between towns. A human driver can find their way 
from one town to another by following a map, but a computer needs to represent the information about 
distances and connections in a structured, numerical representation.

A

B

C

F

D

E

Figure 41.2: A directed, unweighted graph
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Implementing a graph
Two possible implementations of a graph are the adjacency matrix and the adjacency list.

The adjacency matrix
A two-dimensional array can be used to store information about a directed or undirected graph. Each 
of the rows and columns represents a node, and a value stored in the cell at the intersection of row i, 
column j indicates that there is an edge connecting node i and node j.

A B C D E F

A 5 4

B 6 3

C 8

D 2

E

F

In the case of an undirected graph, the adjacency matrix will be symmetric, with the same entry in row 
0 column 1 as in row 1 column 0, for example. 

An unweighted graph may be represented with 1s instead of weights, in the relevant cells.

Q1: Draw an adjacency matrix to represent the weighted graph shown in Figure 41.1.

Advantages and disadvantages of the adjacency matrix
An adjacency matrix is very convenient to work with, and adding an edge or testing for the presence of 
an edge is very simple and quick. However, a sparse graph with many nodes but not many edges will 
leave most of the cells empty, and the larger the graph, the more memory space will be wasted. Another 
consideration is that using a static two-dimensional array, it is harder to add or delete nodes.

The adjacency list
An adjacency list is a more space-efficient way to implement a sparsely connected graph. A list of all the 
nodes is created, and each node points to a list of all the adjacent nodes to which it is directly linked. The 
adjacency list can be implemented as a list of dictionaries, with the key in each dictionary being the node 
and the value, the edge weight.  

The graph above would be represented as follows:

A

B

C

D

{B:5, C:4}

{E:2}

{F:8}

{C:6, D:3}

E

F {}

{}

A

B

C

F

D

5

4

8

6

3

2

E
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Applications of depth-first search
Applications of the depth-first search include the following:

• In scheduling jobs where a series of tasks is to be performed, and certain tasks must be completed 
before the next one begins. 

• In solving problems such as mazes, which can be represented as a graph

Finding a way through a maze
A depth-first search can be used to find a way out of a maze. Junctions where there is a choice of route 
in the maze are represented as nodes on a graph.

A

D

E

C

B

X

A

B

D

C

E

X

Q1: (a) Redraw the graph without showing the dead ends.

 (b) State the properties of this graph that makes it a tree.

 (c)  Complete the table below to show how the graph would be represented using an  
adjacency matrix.

A B C D E X

A

B

C

D

E

X

Q2: Draw a graph representing the following maze. Show the dead ends on your graph.

XA

CB

E

F

D
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Chapter 53 – The Turing machine

Objectives
•	 Know that a Turing machine can be viewed as a computer with a single fixed program, expressed using

o a finite set of states in a state transition diagram

o a finite alphabet of symbols

o an infinite tape with marked off squares

o a sensing read-write head that can travel along the tape, one square at a time

•	 Understand the equivalence between a transition function and a state transition diagram

•	 Be able to:

o represent transition rules using a transition function

o represent transition rules using a state transition diagram

o hand-trace simple Turing machines

•	 Explain the importance of Turing machines and the Universal Turing machine to the subject of 
computation

Alan Turing
Alan Turing (1912–1954) was a British computer scientist and mathematician, 
best known for his work at Bletchley Park during the Second World War. 
While working there, he devised an early computer for breaking German 
ciphers, work which probably shortened the war by two or more years and 
saved countless lives.

Turing was interested in the question of computability, and the answer 
to the question “Is every mathematical task computable?” In 1936 he 
invented a theoretical machine, which became known as the Turing 
machine, to answer this question. 

The Turing machine
The Turing machine consists of an infinitely long strip of tape divided into squares. It has a read/write 
head that can read symbols from the tape and make decisions about what to do based on the contents 
of the cell and its current state. 

Essentially, this is a finite state machine with the addition of an infinite memory on tape. The FSM 
specifies the task to be performed; it can erase or write a different symbol in the current cell, and it can 
move the read/write head either left or right.

State S1

1 0 1 0 0 0 0 ...... 1 □ □1 1

Read / Write head

Infinite tape

The Turing machine is an early precursor of the modern computer, with input, output and a program 
which describes its behaviour. Any alphabet may be defined for the Turing machine; for example a binary 
alphabet of 0, 1 and □ (representing a blank), as shown in the diagram above.

9-53
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The finite state machine corresponding to the state transition diagram is given below.

S0 S1 S2 S3

□,□,L 0,1,L
□,1,R

1,0,L
1,1,R
0,0,R

1,1,R
0,0,R

□,□,L

Q1: Trace the computation of the Turing machine if the tape starts with the data 11 as shown below.

S0

...... 1 1 □□□□

(You will need to draw ten representations of the tape to complete the computation.)

Transition functions
The transition rules for any Turing machine can be expressed as a transition function d. The rules are 
written in the form

 d (Current State, Input symbol) = (Next State, Output symbol, Movement).

Thus the rule 

 d (S1, 0) = (S2, 1, L)

means “IF the machine is currently in state S1 and the input symbol read from the tape is 0, THEN write a 
1 to the tape, and move left and change state to S2”.

Q2: Looking at the state transition diagram above, write the transition rules for inputs of 0, 1 and □ 
when the machine is in state S0.

The universal Turing machine
A Turing machine can theoretically represent any computation.

A, B 

A, B 

 A + B

 A * B

+

*

Each machine has a different program to compute the desired operation. However, the obvious problem 
with this is that a different machine has to be created for each operation, which is clearly impractical.

Turing therefore came up with the idea of the Universal Turing machine, which could be used to 
compute any computable sequence. He wrote: “If this machine U is supplied with the tape on the 
beginning of which is written the string of quintuples separated by semicolons of some computing 
machine M, then U will compute the same sequence as M.”

9-53
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Chapter 68 – Object-oriented design principles

Objectives

• Understand concepts of association, composition and aggregation

• Understand the use of polymorphism and overriding

• Be aware of object-oriented design principles:

 ◦ encapsulate what varies

 ◦ favour composition over inheritance

 ◦ program to interfaces, not implementation

• Be able to draw and interpret class diagrams

Association, aggregation and composition
Recall that inheritance is based on an “is a” relationship between two classes. For example, a cat 
“is a(n)” animal, a car “is a” vehicle. In a similar fashion, association may be loosely described as a 
“has a” relationship between classes. Thus a railway company may be associated with the engines and 
carriages it owns, or the track that it maintains. A teacher may be associated with a form bi-directionally 
– a teacher “has a” student, and a student “has a” teacher. However, there is no ownership between 
objects and each has their own lifecycle, and can be created and deleted independently.

Association aggregation, or simply aggregation, is a special type of more specific association. It can 
occur when a class is a collection or container of other classes, but the contained classes do not have a 
strong lifecycle dependency on the container. For example, a player who is part of a team does not cease 
to exist if the team is disbanded.

Aggregation may be shown in class diagrams using a hollow diamond shape between the two classes.

Team Player

Class diagram showing association aggregation

Composition aggregation, or simply composition, is a stronger form of aggregation. If the container is 
destroyed, every instance of the contained class is also destroyed. For example if a hotel is destroyed, 
every room in the hotel is destroyed.

Composition may be shown in class diagrams using a filled diamond shape. The diamond is at the end of 
the class that owns the creational responsibility.

Hotel Room

Class diagram showing composition aggregation

Q1: Specify whether each of the following describe association aggregation or composition 
aggregation.

(a) Zoo and ZooAnimal

(b) RaceTrack and TrackSection

(c) Department and Teacher

12-68
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Polymorphism
Polymorphism refers to a programming language’s ability to process objects differently depending on 
their class. For example, in the last chapter we looked at an application that had a superclass Animal, 
and subclasses Cat and Rodent. All objects in subclasses of Animal can execute the methods 
moveLeft, moveRight, which will cause the animal to move one space left or right.

Animal

Rodent

Mouse Beaver

Cat

Moves
one space

Moves
three spaces

Moves
two spaces

We might decide that a cat should move three spaces when a moveLeft or moveRight message is 
received, and a Rodent should move two spaces. We can define different methods within each of the 
classes to implement these moves, but keep the same method name for each class.

Defining a method with the same name and formal argument types as a method inherited from a 
superclass is called overriding. In the example above, the moveLeft method in each of the Cat and 
Rodent classes overrides the method in the superclass Animal.

Q2: Suppose that tom is an instance of the Cat class, and jerry is an instance of the Mouse 
class. What will happen when each of these statements is executed?

tom.moveRight()

jerry.moveRight()

Q3: Looking at the diagram above, what changes do you need to make so that bertie, an instance 
of the Beaver class, moves only one space when given a moveRight() message?

Class definition including override
Class definitions for the classes Animal and Cat will be something like this:

Animal = Class
   Public
    Procedure moveLeft
    Procedure moveRight 
   Protected
    Position: Integer
   End
Cat = Subclass (Animal)
   Public
    Procedure moveLeft (Override)
    Procedure moveRight (Override)
    Procedure pounce
   Private
    Name: String
   End

Note: The 'Protected' access modifier is described on page 356.

12-68
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