
The aim of this textbook is
to provide a detailed
understanding of each topic
in the second year of the new
AQA A Level Computer
Science specifi cation. It is
presented in an accessible and
interesting way, with many
in-text questions to test
students’ understanding of the
material and ability to apply it.

The book is divided into six
sections, each containing
roughly six chapters. Each
chapter covers material that
can comfortably be taught
in one or two lessons. It will
also be a useful reference and
revision guide for students
throughout the A Level course.
Two short appendices contain
A Level content that could
be taught in the fi rst year of
the course as an extension to
related AS topics.

Each chapter contains
exercises, some new and
some from past examination
papers, which can be set
as homework. Answers to
all these are available to
teachers only, in a Teachers
Supplement which can be
ordered from our website
www.pgonline.co.uk

About the authors
Pat Heathcote is a wellknown
and successful author of
Computing textbooks. She has
spent many years as a teacher
of A Level Computing courses
with signifi cant examining
experience. She has also
worked as a programmer
and systems analyst, and was
Managing Director of Payne-
Gallway Publishers until 2005.

Rob Heathcote has many
years of experience teaching
Computer Science and is
the author of several popular
textbooks on Computing. He
is now Managing Director of
PG Online, and writes and
edits a substantial number of
the online teaching materials
published by the company.

Computer
Science

AQA A Level Year 2

Computer
Science

AQA A Level Year 2

AQA A Level Year 2
Computer Science
P.M. Heathcote

R.S.U. Heathcote

Published by
PG Online Limited
The Old Coach House
35 Main Road
Tolpuddle
Dorset
DT2 7EW
United Kingdom
sales@pgonline.co.uk
www.pgonline.co.uk

2016

ii

Acknowledgements
We are grateful to the AQA Examination Board for permission to use questions from past papers.

The answers in the Teacher’s Supplement are the sole responsibility of the authors and have neither
been provided nor approved by the examination board.

We would also like to thank the following for permission to reproduce copyright photographs:

Screenshot from Roboform website © Roboform
Alan Turing © By kind permission of the Provost and Fellows, King’s College, Cambridge
from Archives Centre, King’s College, Cambridge. AMT/K/7/12
Trans-continental Internet connections © Telegeography
Internet registries map © Ripe NCC
Other photographic images © Shutterstock

A catalogue entry for this book is available from the British Library

ISBN: 978-1-910523-03-2

Copyright © P.M.Heathcote and R.S.U.Heathcote 2016

All rights reserved

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means without the prior written permission of the copyright owner.

Printed and bound in Great Britain by Lightning Source Inc., Milton Keynes

Graphics: Rob Heathcote

Cover picture © ‘Blue Day’
Acrylic on board
Reproduced with the kind permission of Andrew Bird
www.abirdart.co.uk

Design and artwork by OnThree
www.on-three.com

Typeset by Ian Kingston

First edition 2016, reprinted 2016

iii

Preface
The aim of this textbook is to provide detailed coverage of the topics in the new AQA A Level Computer
Science specification.

The book is divided into six sections and within each section, each chapter covers material that can
comfortably be taught in one or two lessons.

In the second year of this course there is a strong emphasis on algorithms and data structures, and these
are covered in the first two sections of the book. These are followed by sections on regular languages,
the Internet and databases.

Object Oriented Programming and functional programming are covered in the final section, which
describes basic theoretical concepts in OOP, as well as providing some practical exercises using the
functional programming language Haskell. Lists, the fact-based model and ‘Big Data’ are all described
and explained.

Two short appendices contain A Level content that could be taught in the first year of the course as an
extension to related AS topics.

The OOP concepts covered may also be helpful in the coursework element of the A Level course.

Each chapter contains exercises and questions, some new and some from past examination papers.
Answers to all these are available to teachers only in a Teacher’s Supplement which can be ordered from
our website www.pgonline.co.uk.

Approval message from AQA

This textbook has been approved by AQA for use with our qualification. This means that we have
checked that it broadly covers the specification and we are satisfied with the overall quality. Full details of
our approval process can be found on our website.

We approve textbooks because we know how important it is for teachers and students to have the right
resources to support their teaching and learning. However, the publisher is ultimately responsible for the
editorial control and quality of this book.

Please note that when teaching the A Level Computer Science course, you must refer to AQA’s
specification as your definitive source of information. While this book has been written to match the
specification, it cannot provide complete coverage of every aspect of the course.

A wide range of other useful resources can be found on the relevant subject pages of our
website: www.aqa.org.uk.

iv

Contents

Section 7
Data structures 187

Chapter 37 Queues 188

Chapter 38 Lists 194

Chapter 39 Stacks 198

Chapter 40 Hash tables and dictionaries 202

Chapter 41 Graphs 207

Chapter 42 Trees 211

Chapter 43 Vectors 217

Section 8
Algorithms 223

Chapter 44 Recursive algorithms 224

Chapter 45 Big-O notation 229

Chapter 46 Searching and sorting 235

Chapter 47 Graph-traversal algorithms 243

Chapter 48 Optimisation algorithms 249

Chapter 49 Limits of computation 254

Section 9

Regular languages 259
Chapter 50 Mealy machines 260

Chapter 51 Sets 265

Chapter 52 Regular expressions 269

Chapter 53 The Turing machine 273

Chapter 54 Backus-Naur Form 278

Chapter 55 Reverse Polish notation 283

v

Section 10
The Internet 287

Chapter 56 Structure of the Internet 288

Chapter 57 Packet switching and routers 292

Chapter 58 Internet security 294

Chapter 59 TCP/IP, standard application layer protocols 300

Chapter 60 IP addresses 307

Chapter 61 Client server model 313

Section 11
Databases and software development 318

Chapter 62 Entity relationship modelling 319

Chapter 63 Relational databases and normalisation 323

Chapter 64 Introduction to SQL 330

Chapter 65 Defining and updating tables using SQL 336

Chapter 66 Systematic approach to problem solving 342

Section 12
OOP and functional programming 346

Chapter 67 Basic concepts of object-oriented programming 347

Chapter 68 Object-oriented design principles 353

Chapter 69 Functional programming 360

Chapter 70 Function application 367

Chapter 71 Lists in functional programming 371

Chapter 72 Big Data 374

References 379

Appendices and Index

Appendix A Floating point form 380

Appendix B Adders and D-type flip-flops 387

Index 391

chapter 41 – GrapHs

207

Chapter 41 – Graphs

Objectives

• Be aware of a graph as a data structure used to represent complex relationships

• Be familiar with typical uses for graphs

• Be able to explain the terms: graph, weighted graph, vertex/node, edge/arc, undirected graph,
directed graph

• Know how an adjacency matrix and an adjacency list may be used to represent a graph

• Be able to compare the use of adjacency matrices and adjacency lists

Definition of a graph
A graph is a set of vertices or nodes connected by edges or arcs. The edges may be one-way or
two way. In an undirected graph, all edges are bidirectional. If the edges in a graph are all one-way, the
graph is said to be a directed graph or digraph.

Bury St Edmunds

57

10

931 56

15
21

45

25

Framlingham

Wickham Market

WoodbridgeIpswich

Stowmarket

Figure 41.1: An undirected graph with weighted edges

The edges may be weighted to show there is a cost to go from one vertex to another as in Figure 41.1.
The weights in this example represent distances between towns. A human driver can find their way
from one town to another by following a map, but a computer needs to represent the information about
distances and connections in a structured, numerical representation.

A

B

C

F

D

E

Figure 41.2: A directed, unweighted graph

7-41

Section 7 – Data structures

208

Implementing a graph
Two possible implementations of a graph are the adjacency matrix and the adjacency list.

The adjacency matrix
A two-dimensional array can be used to store information about a directed or undirected graph. Each
of the rows and columns represents a node, and a value stored in the cell at the intersection of row i,
column j indicates that there is an edge connecting node i and node j.

A B C D E F

A 5 4

B 6 3

C 8

D 2

E

F

In the case of an undirected graph, the adjacency matrix will be symmetric, with the same entry in row
0 column 1 as in row 1 column 0, for example.

An unweighted graph may be represented with 1s instead of weights, in the relevant cells.

Q1: Draw an adjacency matrix to represent the weighted graph shown in Figure 41.1.

Advantages and disadvantages of the adjacency matrix
An adjacency matrix is very convenient to work with, and adding an edge or testing for the presence of
an edge is very simple and quick. However, a sparse graph with many nodes but not many edges will
leave most of the cells empty, and the larger the graph, the more memory space will be wasted. Another
consideration is that using a static two-dimensional array, it is harder to add or delete nodes.

The adjacency list
An adjacency list is a more space-efficient way to implement a sparsely connected graph. A list of all the
nodes is created, and each node points to a list of all the adjacent nodes to which it is directly linked. The
adjacency list can be implemented as a list of dictionaries, with the key in each dictionary being the node
and the value, the edge weight.

The graph above would be represented as follows:

A

B

C

D

{B:5, C:4}

{E:2}

{F:8}

{C:6, D:3}

E

F {}

{}

A

B

C

F

D

5

4

8

6

3

2

E

7-41

chapter 47 – grAph-trAversAl Algorithms

247

Applications of depth-first search
Applications of the depth-first search include the following:

• In scheduling jobs where a series of tasks is to be performed, and certain tasks must be completed
before the next one begins.

• In solving problems such as mazes, which can be represented as a graph

Finding a way through a maze
A depth-first search can be used to find a way out of a maze. Junctions where there is a choice of route
in the maze are represented as nodes on a graph.

A

D

E

C

B

X

A

B

D

C

E

X

Q1: (a) Redraw the graph without showing the dead ends.

 (b) State the properties of this graph that makes it a tree.

 (c) Complete the table below to show how the graph would be represented using an
adjacency matrix.

A B C D E X

A

B

C

D

E

X

Q2: Draw a graph representing the following maze. Show the dead ends on your graph.

XA

CB

E

F

D

8-47

chapter 53 – the tuRing Machine

273

Chapter 53 – The Turing machine

Objectives
•	 Know that a Turing machine can be viewed as a computer with a single fixed program, expressed using

o a finite set of states in a state transition diagram

o a finite alphabet of symbols

o an infinite tape with marked off squares

o a sensing read-write head that can travel along the tape, one square at a time

•	 Understand the equivalence between a transition function and a state transition diagram

•	 Be able to:

o represent transition rules using a transition function

o represent transition rules using a state transition diagram

o hand-trace simple Turing machines

•	 Explain the importance of Turing machines and the Universal Turing machine to the subject of
computation

Alan Turing
Alan Turing (1912–1954) was a British computer scientist and mathematician,
best known for his work at Bletchley Park during the Second World War.
While working there, he devised an early computer for breaking German
ciphers, work which probably shortened the war by two or more years and
saved countless lives.

Turing was interested in the question of computability, and the answer
to the question “Is every mathematical task computable?” In 1936 he
invented a theoretical machine, which became known as the Turing
machine, to answer this question.

The Turing machine
The Turing machine consists of an infinitely long strip of tape divided into squares. It has a read/write
head that can read symbols from the tape and make decisions about what to do based on the contents
of the cell and its current state.

Essentially, this is a finite state machine with the addition of an infinite memory on tape. The FSM
specifies the task to be performed; it can erase or write a different symbol in the current cell, and it can
move the read/write head either left or right.

State S1

1 0 1 0 0 0 0 1 □ □1 1

Read / Write head

Infinite tape

The Turing machine is an early precursor of the modern computer, with input, output and a program
which describes its behaviour. Any alphabet may be defined for the Turing machine; for example a binary
alphabet of 0, 1 and □ (representing a blank), as shown in the diagram above.

9-53

Section 9 – RegulaR languages

276

The finite state machine corresponding to the state transition diagram is given below.

S0 S1 S2 S3

□,□,L 0,1,L
□,1,R

1,0,L
1,1,R
0,0,R

1,1,R
0,0,R

□,□,L

Q1: Trace the computation of the Turing machine if the tape starts with the data 11 as shown below.

S0

...... 1 1 □□□□

(You will need to draw ten representations of the tape to complete the computation.)

Transition functions
The transition rules for any Turing machine can be expressed as a transition function d. The rules are
written in the form

 d (Current State, Input symbol) = (Next State, Output symbol, Movement).

Thus the rule

 d (S1, 0) = (S2, 1, L)

means “IF the machine is currently in state S1 and the input symbol read from the tape is 0, THEN write a
1 to the tape, and move left and change state to S2”.

Q2: Looking at the state transition diagram above, write the transition rules for inputs of 0, 1 and □
when the machine is in state S0.

The universal Turing machine
A Turing machine can theoretically represent any computation.

A, B

A, B

 A + B

 A * B

+

*

Each machine has a different program to compute the desired operation. However, the obvious problem
with this is that a different machine has to be created for each operation, which is clearly impractical.

Turing therefore came up with the idea of the Universal Turing machine, which could be used to
compute any computable sequence. He wrote: “If this machine U is supplied with the tape on the
beginning of which is written the string of quintuples separated by semicolons of some computing
machine M, then U will compute the same sequence as M.”

9-53

Chapter 68 – oBject-oriented design principles

353

Chapter 68 – Object-oriented design principles

Objectives

• Understand concepts of association, composition and aggregation

• Understand the use of polymorphism and overriding

• Be aware of object-oriented design principles:

 ◦ encapsulate what varies

 ◦ favour composition over inheritance

 ◦ program to interfaces, not implementation

• Be able to draw and interpret class diagrams

Association, aggregation and composition
Recall that inheritance is based on an “is a” relationship between two classes. For example, a cat
“is a(n)” animal, a car “is a” vehicle. In a similar fashion, association may be loosely described as a
“has a” relationship between classes. Thus a railway company may be associated with the engines and
carriages it owns, or the track that it maintains. A teacher may be associated with a form bi-directionally
– a teacher “has a” student, and a student “has a” teacher. However, there is no ownership between
objects and each has their own lifecycle, and can be created and deleted independently.

Association aggregation, or simply aggregation, is a special type of more specific association. It can
occur when a class is a collection or container of other classes, but the contained classes do not have a
strong lifecycle dependency on the container. For example, a player who is part of a team does not cease
to exist if the team is disbanded.

Aggregation may be shown in class diagrams using a hollow diamond shape between the two classes.

Team Player

Class diagram showing association aggregation

Composition aggregation, or simply composition, is a stronger form of aggregation. If the container is
destroyed, every instance of the contained class is also destroyed. For example if a hotel is destroyed,
every room in the hotel is destroyed.

Composition may be shown in class diagrams using a filled diamond shape. The diamond is at the end of
the class that owns the creational responsibility.

Hotel Room

Class diagram showing composition aggregation

Q1: Specify whether each of the following describe association aggregation or composition
aggregation.

(a) Zoo and ZooAnimal

(b) RaceTrack and TrackSection

(c) Department and Teacher

12-68

SeCtion 12 – oop and functional programming

354

Polymorphism
Polymorphism refers to a programming language’s ability to process objects differently depending on
their class. For example, in the last chapter we looked at an application that had a superclass Animal,
and subclasses Cat and Rodent. All objects in subclasses of Animal can execute the methods
moveLeft, moveRight, which will cause the animal to move one space left or right.

Animal

Rodent

Mouse Beaver

Cat

Moves
one space

Moves
three spaces

Moves
two spaces

We might decide that a cat should move three spaces when a moveLeft or moveRight message is
received, and a Rodent should move two spaces. We can define different methods within each of the
classes to implement these moves, but keep the same method name for each class.

Defining a method with the same name and formal argument types as a method inherited from a
superclass is called overriding. In the example above, the moveLeft method in each of the Cat and
Rodent classes overrides the method in the superclass Animal.

Q2: Suppose that tom is an instance of the Cat class, and jerry is an instance of the Mouse
class. What will happen when each of these statements is executed?

tom.moveRight()

jerry.moveRight()

Q3: Looking at the diagram above, what changes do you need to make so that bertie, an instance
of the Beaver class, moves only one space when given a moveRight() message?

Class definition including override
Class definitions for the classes Animal and Cat will be something like this:

Animal = Class
 Public
 Procedure moveLeft
 Procedure moveRight
 Protected
 Position: Integer
 End
Cat = Subclass (Animal)
 Public
 Procedure moveLeft (Override)
 Procedure moveRight (Override)
 Procedure pounce
 Private
 Name: String
 End

Note: The 'Protected' access modifier is described on page 356.

12-68

INDEX– AQA A LEVEL COMPUTER SCIENCE

391

A
absolute error, 385
abstract data types, 188
adders

concatenating, 387
adjacency

list, 208
matrix, 208

ADT, 188
aggregation, 353
agile modelling, 342
Alan Turing, 273
analysis, 342
API, 313
appending, 372
application layer, 300, 301
Application Programming

Interface, 313
ARPANET, 288
array, 190
association, 353
asymmetric encryption, 296
attributes, 319, 347

B
Backus-Naur form, 278
base case, 224
behaviours, 347
Big Data, 374
Big-O notation, 229, 231
binary expression tree, 286
binary search, 236

recursive algorithm, 237
tree, 212

binary search tree, 215
binary tree search, 238
BNF, 278
breadth-first

search, 248
traversal, 245, 246

browser, 305
bubble sort, 238

C
call stack, 200, 225
cardinality, 265
Cartesian product, 266
checksum, 292
ciphertext, 295

circular queue, 190
class, 348
classful addressing, 308
classless addressing, 308
client-server

database, 339
model, 313

co-domain, 360
collision, 202

resolution, 204
commitment ordering, 340
compact representation, 266
composite data types, 188
composition, 353
computability, 273
computable problems, 256
constructor, 348
convex combination, 220
CRC, 292
CRUD, 314
CSS Object Model, 305
CSSOM, 305
cyclical redundancy check, 292

D
data abstraction, 188
data packets, 292
database

defining a table, 336
locking, 340
normalisation, 324
relational, 323

depth-first
traversal, 243

design, 343
dictionary, 205
digital

certificate, 297
signature, 296

digraph, 207
Dijkstra’s algorithm, 249, 293
directed graph, 207
DNS, 290
Document Object Model, 305
DOM, 305
domain, 360
domain name, 289, 290

fully qualified, 291
Domain Name System, 290

dot product, 220
D-type flip-flop, 388, 389
dynamic data structure, 190
dynamic filtering, 295

E
edge, 207
elementary data types, 188
encapsulating what varies, 357
encapsulation, 188, 350
encryption, 295

asymmetric, 296
private key, 296
public key, 296
symmetric, 296

entity, 319
identifier, 319
relationship diagram, 320, 321

evaluation, 344
exponent, 381
exponential function, 230

F
fact-based model, 377
FIFO, 188
File Transfer Protocol, 303
filter, 370
finite set, 265
finite state

automaton, 260
machine, 260

firewall, 294
First In First Out, 188
First normal form, 324
first-class object, 362
fixed point, 385
floating point, 385

binary numbers, 381
fold (reduce), 370
folding method, 203
foreign key, 320, 324
FQDN, 291
FSM, 260
FTP, 303
full adder, 387
Fully Qualified Domain Names, 291
function, 360

application, 362
higher-order, 367

Index

Index

INDEX– AQA A LEVEL COMPUTER SCIENCE

392

functional
composition, 364
programming, 360

functions, 230

G
Galois field, 220
gateway, 293
getter messages, 349
GF(2), 220
graph, 207

schema, 377
traversals, 243

H
half-adder, 387
Halting problem, 257
hash table, 202
hashing algorithm, 202

folding method, 203
Haskell, 360, 361
heuristic methods, 256
higher-order function, 367
HTTP request methods, 314

I
immutable, 363, 372
implementation, 344
infinite set, 266
infix expression, 284
information hiding, 188, 350
inheritance, 351
in-order traversal, 214, 225, 226
instantiation, 348
interface, 357
Internet

registrars, 289
registries, 290
security, 294
Service Providers, 289

intractable problems, 255
IP address, 291

private, 309
public, 309
structure, 307

ISP, 289

J
JSON, 315, 316

L
limits of computation, 254
linear function, 230
linear search, 235
link layer, 300, 301
linking database tables, 324
list, 194, 371

appending to, 372
prepending to, 372

logarithmic function, 231

M
MAC address, 302
mail server, 304
malicious software, 297
malware, 297
mantissa, 381
many-to-many relationship, 321, 326
map, 369
maze, 247
Mealy machines, 260, 261
Media Access Control, 301
merge sort, 239

space complexity, 241
time complexity, 241

meta-languages, 278
modelling data requirements, 343

N
NAT, 310
natural number, 265
network

interface cards, 294
layer, 300, 301
security, 294

Network Address
Translation, 310, 311
NIC, 294
node, 207
non-computable problems, 256
normal form

first (1NF), 324
second (2NF), 326
third (3NF), 326

normalisation, 327
of databases, 324
of floating point number, 382

O
object-oriented programming, 347
 ORDER BY, 332
oscillator, 388
overflow, 386
override, 354

P
packet filters, 294
packet switching, 292
PageRank algorithm, 209
parity bit checker, 221
partial dependency, 326
partial function application, 368
permutations, 231
phishing, 299
plaintext, 295
polymorphism, 354
polynomial function, 230
polynomial-time solution, 255
POP3, 304
port forwarding, 311
Post Office Protocol (v3), 304
postfix

expression, 284
notation, 283

post-order traversal, 214, 227
precedence rules, 283
pre-order traversal, 213, 227
prepending, 372
primary key, 319
priority queue, 192
private, 348

key encryption, 296
modifier, 356

procedural programming, 347
programming paradigm, 360
proper subset, 266
protected access modifier, 356
prototype, 343
proxy server, 294, 295
public, 348

modifier, 356

Q
queue, 188

operations, 189

Index

INDEX– AQA A LEVEL COMPUTER SCIENCE

393

R
rational number, 265
real number, 265
record locking, 340
recursion, 224
recursive algorithm, 237
reference variable, 349
referential transparency, 363
regular expressions, 269
regular language, 270
rehashing, 204
relation, 323
relational database, 320, 323
relationships, 320
relative error, 385
Representational State Transfer, 314
REST, 314
Reverse Polish notation, 283
root node, 211
rooted tree, 211
rounding errors, 384
router, 293

S
scaling vectors, 220
Second normal form, 326
Secure Shell, 304
SELECT .. FROM .. WHERE, 330
serialisation, 340
set, 265

compact representation, 266
comprehension, 266
countable, 266
countably infinite, 266
difference, 267
intersection, 267
union, 267

setter messages, 349
side effects, 363
simulation, 188
social engineering, 299
software development, 342
sorting algorithms, 44, 238
space complexity, 241
spam filtering, 299
specifier

private, 356
protected access, 356
public, 356

SQL, 330, 338
SSH, 304
stack, 198

call, 200
frame, 201
overflow, 200
underflow, 200

state, 347
transition diagrams, 260
transition table, 261

stateful inspection, 295
stateless, 363
static data structure, 190
static filtering, 294
Static IP addressing, 310
Structured Query Language, 330
subclass, 351
subnet mask, 308, 310
subnetting, 309
subset, 266
superclass, 351
symmetric encryption, 296
synonym, 202
syntax diagrams, 280
system

vulnerabilities, 298

T
table structure, 336
TCP/IP protocol stack, 300
Telnet, 304
testing, 344
thick-client computing, 316
thin-client computing, 316
Third normal form, 326
Tim Berners-Lee, 288
time complexity, 229, 233, 235, 236

of merge sort, 241
timestamp ordering, 340
tractable problems, 255
transition functions, 276
transport layer, 300, 301
travelling salesman problem, 254, 256
traversing a binary tree, 213
tree, 211

child, 211
edge, 211
leaf node, 211
node, 211

parent, 211
root, 211
subtree, 211
traversal algorithms, 225

trojans, 298
TSP, 256
Turing machine, 273
typeclasses, 365

U
underflow, 386
undirected graph, 207
Uniform Resource Locators, 289
union, 267
universal Turing machine, 276
URLs, 289

V
vector, 217

adding and subtracting, 218
convex combination, 220
dot product, 220
scaling, 220

vertex, 207
viruses, 297

W
web server, 305
WebSocket protocol, 314
weighted graph, 207
World Wide Web, 288
worms, 297
WWW, 288

X
XML, 315, 316

Index

The aim of this textbook is
to provide a detailed
understanding of each topic
in the second year of the new
AQA A Level Computer
Science specifi cation. It is
presented in an accessible and
interesting way, with many
in-text questions to test
students’ understanding of the
material and ability to apply it.

The book is divided into six
sections, each containing
roughly six chapters. Each
chapter covers material that
can comfortably be taught
in one or two lessons. It will
also be a useful reference and
revision guide for students
throughout the A Level course.
Two short appendices contain
A Level content that could
be taught in the fi rst year of
the course as an extension to
related AS topics.

Each chapter contains
exercises, some new and
some from past examination
papers, which can be set
as homework. Answers to
all these are available to
teachers only, in a Teachers
Supplement which can be
ordered from our website
www.pgonline.co.uk

About the authors
Pat Heathcote is a wellknown
and successful author of
Computing textbooks. She has
spent many years as a teacher
of A Level Computing courses
with signifi cant examining
experience. She has also
worked as a programmer
and systems analyst, and was
Managing Director of Payne-
Gallway Publishers until 2005.

Rob Heathcote has many
years of experience teaching
Computer Science and is
the author of several popular
textbooks on Computing. He
is now Managing Director of
PG Online, and writes and
edits a substantial number of
the online teaching materials
published by the company.

Computer
Science

AQA A Level Year 2

Computer
Science

AQA A Level Year 2

