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PREFACE TO FIRST EDITION

THe books Elementary Analysis and Further Elementary Analysis
were designed to provide a complete two-year VIth Form course in
Pure Mathematics for all but the outright mathematical specialist.
This volume is intended to complete the two-year course for these
specialists and also to extend the course to give adequate preparation
for the “S” papers of the G.C.E. and similar examinations.

In choosing the subject matter, careful attention has been given to
the existing or proposed future syllabuses of the different Examining
Bodies for the General Certificate of Education. A great deal of
thought has been given to the order of presentation of the different
topics, but clearly this order is flexible and can be modified to suit
different requirements and to fit in with different ideas.

As in the previous books, the aim is to introduce pupils as quickly
as possible to fresh mathematical fields and to make them acquainted
with new mathematical techniques. To achieve this aim and to limit
the size of this book it has been necessary in many instances to dispense
with formal proofs and rigid lines of approach.

Experience has proved the necessity for large numbers of examples
of all types, and it will be seen that this requirement is very adequately
met. Care has been taken to grade the examples in the text according
to degree of difficulty. The needs of revision are catered for by a
set of miscellaneous examples at the end of each chapter, together
with a comprehensive set of Revision Papers, both A and S levels;
a feature which has proved popular in the earlier volumes.

My thanks are due to the following examining bodies, who have
kindly given permission to use questions set in their past examinations:

The Senate of the University of London: (L)
The Cambridge Local Examination Syndicate: ©
The Oxford and Cambridge Joint Examination Board: (O.C.)
The Northern Universities Joint Matriculation Board: (N).

1 am indebted to several past pupils, particularly Mr. J. D. Knowles,
Mr. K. Burrell and Mr. J. B. Brelsford, for the assistance they have
given in reading and checking the manuscript and the answers.

R.E
December 1961



PREFACE TO REVISED EDITION

THE need for a further reprinting has given the opportunity of revising
the text in order to meet the requirements of the changeover to metric
and S.I. units. The number of instances where modification was
necessary is small and consequently the book is essentially unchanged.
I would like to thank the users of the book who have notified me of
errors; it is hoped that most of these have now been eliminated.

R.P.
March 1970
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CHAPTER 1

THE TRIANGLE

Medians of a triangle. Let the medians BB', CC’ of AABC meetin G
(Fig. 1). Then as B', C’ are the mid-points of AC, AB respectively, it
follows that C’'B’ is parallel to BC and equal
to half of it. Hence from the similar triangles
C'GRB', BCG
BG_CG_C¥8_1
GBE_GC BC 2
Le. the medians BB, CC’ trisect each other & ry c
at G. Ft. 1.
Similarly, it can be shown that the medians
AA', BB trisect each other at G and therefore the medians AA', BB, CC’
are concurrent in (¢ and trisect each other.
 is called the centroid of A ABC.

Analytically, if A, B, C are the points (x1, »1)s (Xa Yo)» (X3, ¥a)s bY
writing down the coordinates of A" and expressing the fact that G
divides A4’ internally in the ratio 2:1, it follows that G is the point

Blxy+x+ x50, S +3:+ 330k A

Ex. 1. Show how to consiruct a triangle ABC
given the lengths of its three medians.

Draw median 44’ and determine the point of
trisection & (Fig. 2). Produce AA’ to & where
GA’' = A’ and mark arcs with centres G, &'
and radii respectively two-thirds of each of the
remaining two medians. These arcs intersect in g€ o

by
s
W

a second vertex, B, of the required triangle and
C is determined by making A'C=8A4".
The proof depends on the fact that BGCG' is 2
parallelogram as its diagenals bisect cach other.
Apolionius® theorem. AA’' is a median of A ABC (Fig. 3).
Using the Cosine Rule with the notation of the figure,
ct=m?+ (1a¥ —2m(ia) cos (180° —6),
B =nt+(1a)* ~2m({a) cos 0.
Adding and wsing cos {180°—8)= —cos 0,
c? B2 =2mt+ Wla)
i.e. AB? - AC2~= 2AA+ 2BA""— Apollonius’ median theorem.
1

FiG. 2.
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Angles between a median and the side of a triangle. Referring to
Fig. 3, where 5 ABC has B<C, and 4D is an altitude,

_8D datx _DC _Ja-x A
cot A— an” cot VY !

.. cot B—cot C=2—’x=2 cot B =P

’ |

ie. 2cot O=cot B—cot C. {

. 8 A ) o
If 9 is assumed to be the acute angle - fn— Jo—
between the median AA’ and side BC, the Fic. 3.

more general result to cover the cases B> C and 8<C, is

2 cot 6 == cot B~cot C.
An alternative expression can be obtained by dropping perpendiculars
BX, CY to AA’ (Fig. 4). A

Clearly  BX=CY=p say,
XA'=A"Y=xsay.

Then
m+ -
cot x= J‘:; cot f= %, where A4’ =m V.
B < <
2x F\'"“-.
cota—cotﬁ——— =2 cot 4, X
P Fi;. 4.

Generally, 2 cot B = cot a~cot 3, when 8 is taken as acute.

These angle results for a median can readily be extended to the line
joining a vertex of the triangle to a given point on the opposite su:le

If BP: PC=m:n (Fig. 5), it follows that,

(m+n) cot 8 =n cot B~m cot C, -
(m+n) cot § =m cot =~n cot B.

These results have important applications in 5
Statics. g o e
Fia, &

Ex. 2. A aniform rod BC of length 17 cm is freely suspended from a hook A
by strings AB, AC of lengihs 15 cm and 8 em.  Find the inclination of the rod
o the vertical.

As the rod i3 in equilibrivzmn under three forces A
W, T1, T, the lines of action of these forces must be
concusrent (Fig.6). It follows that 4" the mid-point
of BC is vertically below 4 and 0 is the inclination
of the rod to the vertical. &

But 2cotf—cotB-cotC and as ABC is a T r
right- anglecl tnangie (sides B ¢m, 15 ¢m, 17 cm),
cot B= s ; cot C=-& 5- ¥

. 2cotf= 17% cot B=4%§}, 4 w

Usmg tables, B = Fia. 6.
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EXAMPLES la

1. Find the length of the median AA’ of A ABC, wherea=15 cm, b= 12 cm,
c=13 cm.

2. The sides of a triangle are of lengths 5 cm, 7 cm and 10 ¢cm. Find
the length of the shortest median.

3. Write down the coordinates of the centroid of each of the following
triangles; (i) (3, 4), (2,- 1), (— 1, 0); (i) (0, 0}, (4, O), (0, B); (iii) (-2x, ),
(3x, - 2y), (x, 3y}

4, The sides of a parallelogram ace of lengths 4 cm, 7 ¢m and one diagonal
is of length 6 cm. Find the length of the other diagonal.

5. A4, B are fixed points and P moves such that APZ+ BP® is constant.
Prove that the locus of P is a circle.

6. Prove that the centroid of the triangle 4’B'C’ formed by joining the
mid-points of AABC is G, the centroid of A ABC.

7. If A4’, BB’ are medians of A ABC, prove that

AA?— BR'E=FAC? - BCY).

8. Construct AABC in which AB=8 ¢cm, CA=7 ¢m and median
AA' =6 cm.

9, P is a point in the plane of rectangle ABCD and lying outside the
rectangle. Prove that PA®+ PC?=PB*+ PD?, Is the result true if P does
not lie in the plane of the rectangle?

10. Find the coordinates of the centroid of the triangle formed by the lines
y+5x-2=02y+x-4=0,y-4x+7T=0.

11, In any quadrilateral, prove that the sum of the squares of the sides is
equal to the sum of the squares of the diagonals plus four times the square
of the line joining the mid-points of the diagonals.

12. The sides BC, CA, AB of AABC are of lengths 10 cm, 8 ¢m, 5cm
respectively. If X is the mid-point of the median A4’, find the length BX,

13. Construct the triangle with medians of lengths 6 cm, 82 cm and
10-2 cm. ’

14. In AABC, P is the point on BC such that BP:PC=m:n. Prove that
mn
HAB."I"?HAC'E(M“FH)AP’%' mBC’

15. Prove that a triangle can be drawn with sides equal and parallel to the
medians of a given triangle 4BC. Show also that the area of the triangle so
formed is A ABC.

16. A uniform rod of length 13 cm is suspended freely from 2 fixed point
by strings of lengths 12 em and 5 cm fastened to its ends.  Find the inclina-
tion of the rod to the vertical.

17. A rod AB rests in equilibrium with its ends in contact with the inside
edge of a smooth vertical circular hoop. The centre of gravity of the rod is
distant p from A and g from B. If 22 is the angle subtended by the rod at
the ceritre of the hoop and 0 is its inclination to the horizontal, prove that

tan 8=""2 1an », assuming g>p.
s g 4>p
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Circomeentre and circumcircle. In Fig. 7, A', &, C' are the
mid-points of the sides of AABC.
The perpendicular bisectors of €4 and AB intersect at O.

As O lies on the perpendicular bisector A
of CA,
CO=A0.
Similarly, AO=BaG.
. BO=C0g

-

hence O lies on the perpendicular bisector .
of BC, and so the perpendicular bisectors ® A’ ¢
are concurrent in O. Fie. 7.

The circle centre O, radius QA, passes through 4, # and € and is
called the cireumcircle of the triangle; O is the eircuncentre.

Radius of circumeirele. Referring to Fig. 8,

L BOC=2A4.
S LBOA'=A,
and as BA'=A'C=1q,

it follows by using the right-angled triangle
BoA',

a
that 2R= ﬁ-;i-
Similarly, 2R= L and -5 .
’ sin B sin C
2 b [

- R=7GnA ZsnB ZsnC
N.B. OA'=RcosA= % acot A, with similar results for OB’ and OC'.

Alternative expression for R.

If A=area AABC,
then A=4+bcsin A; ie. sin A= zb?

. R 3 _abe

’ 2ZsinA 4A

Ex, 3. fn & ABC the altitudes BE, CF intersect at H. Prove
that the radius of the circle BHC is equal to the radius of the
cirele ABC.

Quad. AFHE is cyclic, hence £ EHF=180° - 4 (Fig. 9).

L BC aq

Radius circle BHC =5 pHc ™ 2 5n (180°- 4)

_a_ .
2sin A 8
= radius of circle ABC. Fic. 9.
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Orthocentre. Through the vertices 4, B, C of AABC lines
ZY, XZ, YX are drawn parallel respectively to sides BC, CA4, AB

(Fig. 10).

S

FiG. 10.

It follows that ABCY is a parallelogram, and so
AY=BC.

Similarly, Z4 = BC and hence A is the mid-point of Z Y.

If AD is an altitude of A ABC, it is perpendicular to Z'Y,

.. AD is the perpendicular bisector of ZY.

Similarly, altitudes BE, CF of A ABC are the perpendicular bisectors
of XZ, YX respectively.

.. AD, BE, CF are concurrent in a point H which is the circumcentre
of AXYZ.

Hence the altitudes of a triangle are concurrent. The point of
concurrence H is called the orthocentre of A ABC.

Important results associated with the orthocentre.

(i) As AXYZ is similar to A ABC with twice its linear dimensions,
it follows that AH is twice the corresponding length 4’0 (Fig. 10).

Le. AH=2A'"0-=acot A,

Similarly, BH=2B'O=b cot B; CH=2C'0O =¢ ¢cot C, where with the
usual notation, 4°, B’, C’ are the mid-points of the sides and O is the
circumcentre of A ABC,

(it) If the altitude AD is prodoced to meet
the circumcirele at P, then HD=DP (Fig. 11).

For £ DBP= £ PAC (same segment)
and LDBE=90"—-C= £ PAC.
.. LDBP=LDBE

and hence A’s DBP, DBH are congruent
(2 angles and common side).

.. HD=DP. FiG. 11.

There are similar results for the altitudes from B and C.

A
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(iii) OH2=R*1-8 cos A cos Beos C). Referring to Fig. 12,

LAOC' =C
S LOAB=%0°"-C.

Also 2L DAC=90"-C.
S LOAX=A-2000P—-C)
=A+2C—(A+B+C) as A+B+C=180°
=C-B. (In the case taken C>B.)

Using right-angled triangle 40X, A
0X =R sin(C—B)
and AX=Rcos (C—B). ’}*" H
But  AH=24'0=2Rcos 4, ‘}TA,{
*. HX=R[cos (C— B)—2 cos A]. il i
. Y 5} C
By Pythagoras, Fig. 12.

OH'=0X2+ HX:= R[sin¥(C— B)+{cos (C— B)—2 cos A}]
= R¥[sin%(C — B)+ cos? (C— B)—4 cos (C— B) cos 4 +4 cos* 4]
= R?[1—4 cos Afcos (C—B)+cos (B+C)),
as cos A= —cos (B+C),

= R%[1 -8 cos A cos Bcos C].

Pedal triangle. The triangle DEF formed by the feet of the altitudes
is called the pedal triangie of & ABC (Fig. 13).
As BCEF is a cyclic quadrilateral,

LAFE=C; /. AEF=B.
. O’ AFE, ABC are similar, and so
EF _AE ABcosd_
BC 4B~ 4B 4
.. EF=acos A. Fu, 13.

Similarly, triangles BDF and CED are each similar to AABC,
and it follows that
FD=bhcos B; DE=ccosC.

Also LADF=90°— L BDF=90"— 4
and LADE=9%0)"~ L CDE=%°"—A4.

+ /EDF=180°—2A with similar results for £ DEF and ZEFD,

when A ABC is acute-angled as taken in Fig. 13.
It will be noted that H is the incentre of the pedal triangle.
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The reader should repeat the previous work for the case when the
triangle is obtuse-angled. It will be found that if A is obtuse,

EF=acos (180°— 4), FD=hcos B, DE=ccos C,;
L. EDF=24—-180°, / DEF=1B, LEFD=2C.

Ex. 4. If i is the orthocentre of [ ABC obtuse-angied at A, prove that
AH.HD=BH . HE=CH . HF (Fig. 14).

As ADBE is a cyclic quadrilateral,
HA.HD=HE.HB (intersecting chords).
As ADCF is a cyclic quadrilateral,

HA.HD=HF. HC (intersecting chords) § .
and hence the required result. Fic. 14.
Ex. 5. Given the circumcentre, the orthocentre and A
one verfex of a triangle, show how lo determine the \
other (fwo vertices. }/ \\
Suppose vertex A is given together with O and H. / \
Determine A’ the mid-point of BC, using the fact ;” o \
that OA’ is parallel to AH and equal to half of it / lr Ho
(Fig. 15). / + \\
Draw a line through A’ perpendicular to 04" and B TTTTA T e
mark off points B, € on it, each distant 04 from O. Fii. 15.

Ex. 6. Prove that the area of the pedal triangle of ANABC is
|2A cos A cos Bcos C.
Referring to Fig. 13, where A ABC is acute-angled,

area A\ DEF=1DF. DEsin Z EDF
=}bcosB.cwsCsin(180°—2A)
=3be cos B cos C sin 24 =be sin A(cos A cos Beos O)
=2A cos A cos Beos C.

When A is obtuse,
area A DEF— - 2A cos A cos Beos C.

Hence in all cases the area of the pedal triangle is numerically equal to
2A cos Acos Beos € orto  |2A cos A cos Beos C.

Nine-point circle. The circle which can be
drawn through 4’, B’, C’, the mid-points of
the sides of a triangle ABC, Fig. 16, will be
shown to pass also through the feet of the
altitudes D, E, F and through the mid-points
P, Q, R of the lines joining the vertices of the
triangle to the orthocentre H. Fia. 16,
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As AP=PH and AC'=C'B, C'Pis parallel to BH.
As BA'=A'C and AC'=C'B, C'A’ is parallel to AC.

s LA CP=%0° as BH is perpendicular to AC,
Similarly, LA'B'P=90"

But aiso £ A4’DA~90° and therefore the circle on A'P as diameter
passes through B', " and D.

Le. the circle 4'B’C’ passes through D and P.

Similarly, it can be proved that this circle passes through E, @ and
also through F, R,

.. The nine points 4, B, C’; D, E, F; P, , R lie on a circle known
as the nine-point circle of the AABC.

Centre and radies of the nine-point circle. 1t
is clear in Fig. 17 that the perpendicular
bisectors of 4’D and C'F both pass through
the mid-point of OH.

"o The centre N of the nine-point circle is
the mid-point of the line joining the circumcentre & y £
O to the orthocentre H. Fic. 17,

Also as AA'B'C’ is similar to AABC and
has half its linear dimensions, it follows that the radius of the nine-point
circle (the circumcircle of A4’B'C’) is 3R.

Le, Radius of nige-point circle=1R =

a_
4 sin A

s elc.

The Euler line. In Fig, 18, A4’ meets OHF
at G, a point which will be shown to be the
centroid of 4 ABC. /

The triangles AGH, A'OG are easily proved £ In
similar, and as AH=24'0, it follows that G
AG=2GA" and HG=2G0O.

Hence G is the centroid of the triangle, and g F{a— e
in consequence the four points O, G, N, H are Fio. 18.
collinear and OG: ON; OH=2:3:6,

The line OH is called the Euler line of A ABC.

Ex. L. If the side BC and the circumcentre O of 5\ ABC are fixed whilst A
is free to move, find the locus of N, the nine-point centre.

The radius, R, of the circumcircle is constant (it equals OB or OC).

.. The radius of the nine-point circle =1R =constant.

Hence as A’, the mid-point of BC, is fixed the locos of N is the circle
centre A°, radius 3 R,

Ex. 8. [f O is the circumeentre of A\ ABC and AQ meets BC at U, prove
that the circle on AU as diameter touches the nine-point circle of A ABC.
The centre of the circle on AU as diameter is X, the mid-point of AT,
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As Z ADU =90°, this circle passes through D, a point on the nine-point
circle of A ABC.

In order to prove the two circles touch at D it is
sufficient to prove that the centre N of the nine-
point circle lies on the radius XD of the circle on
AU as diameter.

Taking P, the mid-point of AH, then AP 18
equal and parallel to OA’ (AH =204").

.. A'Pis parallel to UA.

Consequently as DX bisects AU it will also
bisect A’P, and so it will pass throngh N, the mid-
point of A°P, and the required result follows.

EXAMPLES 1b

1. Triangle ABC ig right-angled at 4. Locate: {i) the circumcentre;
(ii) the orthocentre; (iii) the nine-point centre of the triangle.

2. Calculate the radius of the nine-point circle of a triangle in which one
side is of length 4 cm and the opposite angle 36°.

3. Draw the pedal triangle of a triangle ABC, obtuse-angled at A, and
show that its angles are 2.4 - 180°, 2B and 2C.

4. If BE, CF are altitudes of 5 ABC, prove that the area of AAEF is
equal to A cos® 4, where A is the area of 5 ABC.

8. If H is the orthocentrs of AABC, prove that A4, B, C are the
orthocentres of the triangles BCH, CAH, ABH respectively.

6. If the base and circumcircle of a triangle are given, prove that the locus
of the orthocentre is a circle equal to the circumcircle.

7. Prove that the circumoentre of /A ABC is the orthocentre of AA'BC,
where 4°, B, C’ are the mid-points of the sides of AABC.

8. If K is the orthocentre of /A ABC and D the foot of the altitude from A,
prove: () AH=2Rcos A =acot 4; (i) HP =2R cos Bcos .

9, H is the orthocentre and O the circumcentre of ANABC., If AG
produced and 4H produced meet the circumecircle at X and ¥ respectively,
prove: (i) ZBAX=,CAY; (i) BX=CY=HC; (i) HX bisects BC.

10. If the pedal triangle of a given triangle is isosceles, prove that the
original triangle is either isosceles or has two of its angles differing by 90°.

11. Find the radius of the nine-point circle of & POR in which angle P is
aright angle, PQ=Scm, PR=12cm. Identify the Euler line of this triangle.

12. ¥ XY is the diameter of the circle 4BC which is perpendicular to BC,
prove that AX and A Y are the bisectors of angle BAC.

13. If H is the orthocentre of A ABC, prove that the triangles ABC, HBC
have the same nine-point circle.

14. If any two of the circumcentre, centroid, nine-point centre and
orthocentre coincide, prove that all four coincide and the triangle is
equilateral.

15. With the usual notation, prove that H is the circumcentre of the
triangle formed by joining the circumcentres of triangles HBC, HCA, HAB.
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16, O is the circumcentre and H the orthocentre of A 4BC. If the circle
BOC passes through H, prove that A =60°.

17. Given two vertices and the nine-point centre of a triangle, show how
to construct the triangle,

18, With the usual notation, if AH, BH, CH produced meet the
circumeircle of &ABC at H,, H, Hj respectively, prove that A4 is the
circumeentre of A HH,H, with corresponding results for B and C.

19. The internal bisector of angle A4 meets the circumcircle of A ABC at P.
If M, N are the feet of the perpendiculars from P to AB, AC respectively,
prove that triangles BPM, CPN are congruent and deduce that

AM=AN=}AB+ AC).
Incenire and excentres. As all points on a bisector of an angle are
equidistant from the arms of the angle, it follows that the point of

intersection, I, of the internal bisectors of angles B and € of a triangle
ABC (Fig. 20), is equidistant from all three sides of the triangle.

Hence 7 lies also on the internal bisector of angle 4, i.c. the internal
bisectors of the angles of a triangle are concurrent in 2 point J which is
the centre of the circle which touches the sides of the triangle internally.

Fis called the incentre and the circle is called the inscribed cirele of
the triangle.

In a similar way, it follows that the internal bisector of angle A and
the external bisectors of angles B and C are concurrent in a point J,.

1, is the centre of the circle which touches BC internally and AB, AC
externally.

This circle is the escribed circle opposite A and I, is an excentre.

Excentres I, I are defined similarly.

Referring to the diagram of Fig, 20, it will be noted that the excentres
5, 1, 1, form a triangle whose sides pass through the vertices of the
triangle ABC. Moreover, since the bisectors of an angle are at right
angles, it is casily seen that [ is the orthocentre of ALLL.

Also as A4, B, C are the feet of the altitudes of A LT, it follows that
the circumcircle of 5ABC is the nine-point circle of ALY, Hence
the circumcircle of A 4BC bisects each of the lines Iy, IL, I, and
also the lines f7,, i1, 1,
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Ex. 9, If I is the incenire, O the circumcenire A
and H the orthocentre of AABC, prove that Al

bisects angle OAH. ‘J‘
As / AOB=2C {angle at centre), < ,'
Z BAO =%°-C (Fig. 21). o 1 {H
Also £ DAC=%"-C.
. L BAOG =7 DAC 8 WD e
and as £ BAI=ZL CAl, Fic. 21.
hence L IAQ =L TAH,

Inscribed and escribed circles. In Fig. 22, X, ¥, Z
are the points of contact of the inscribed circle and
the sides of A ABC.

As tangents from a point to a circle are equal in
length, AY=AZ; BX=BZ and CX=CY.

. AY+BX+CX+=1 (perimeter of & ABC)

=
Le. A¥+a=s.
S AY=AF~s—a;
simifarly, BX=BZ=s5-b, CX=CY=s—c FiG. 22.

Now let the escribed circle opposite A touch BC at X; and AC, AB
produced at Y, Z, respectively.
Using the equal tangenis property,
AY1=AZ]_; BZ].#BXI and CYIZCXI.
.. Perimeter 2s=A8+ BX,+ X,C+CA

=A21+A Yl‘
Hence AY,=AZ,=s.
and BX,=AZ,—~AB=s—c¢; CX;=5—h.

There are similar results for the other escribed circles.

Radii of the inscribed and escribed circles. If r is the radius of the
inscribed circle (Fig. 23),
as HNABC= A BIC+ ACIA+ A AIB,
A=1lar+tbr+Jer=sr.

M
-1

Alternatively from AAJIZ, r=AZ tan $4,
i.e. r=(s—a)tan %A4.

Similarly, r=(s—b)taniB and (s—e¢)taniC.
., r={(s—a)tan JA=(s—b) tan 4B=(s—c) tan 1C.
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If r, is the radius of the escribed circle opposite 4 (Fig. 24),

A=1br, 4 Yery - dan,
=4r(b+e—a)=3r(2s—2a)

~r{s—a).
. A A A
Son=gT similarly, ry= b BT
Alternatively from A A6 Z,,
r=AZ tan ¥4=stan 4 4. FiG. 24.
lLe. r,=stan 1A; similarly, r,=stan 1B, r;=stan }C.

Ex. 10. With the usual notation, prove that r =4 R sin 4 A sin 4 B sin 1.

RHS. =2 ,_“_. sin 34 sin 18 sin §C

(s c)(s a) \/(s a}(s b)
sm 18 sin iC

cos 44 s{s a}
o !\/ be
(s a¥s — )5 — g A
V £ s
-
Ex. 11. Prove that r—1+$+é—=+%’ a’+§‘;+f

$\2 fs-a s-b §-e\2
L.H.S.=(E) "'(T) +(_A_) +(-_.&_.)
=${4s’—25(a+b+0)+a’+b’+c3}

A+ 5+
-
Distance between incenfre and circumceatre.

Referring to Fig. 25, where PQ is the
diameter through P,

LI.IM =Al.IP.
S (RHOD(R—0ON=AL. IP
as OL=0M=R,
i.e Re—Oot=AI. 1P
In ABIP,
LIBP=41B+ L CBP=3B+ 7/ CAP
=iB+1A.
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Also L BIP=3A+}B (exterior angle of A AFB).
;. IP=BP=PQ sin ZBQP=2Rsin }4.
In AATY, AI=rcosec 14.
r AI.IP=rcosec 4 .2Rsin 14=2Rr.
RE—0QI*=2Rr.
Le. OI*=R?—2Rr.

Using similar methods, it can be proved that
Ol *=R?+2Rr,; Ol,2=R%+2Rr,; OL*=R*+2Rr,.

EXAMPLES Ic

1. Prove that £ BIC=90"+}A.
2. Show that the radius of the circumcircle of A BIC is 2R sin 4.
3. With the notation of Fig. 22, prove that YY, =ZZ, =a.
4. Show that: (i} AJ, =r, cosec 34 =ssec14; (i) If, =aseciA.
5, With the usual notation, prove that the angle 740 is half the difference
between the angles B and C.
6. If AABC is right-angled at C, prove: (@) 2r=a+b—c; (i) ry=>s.
7. Prove that the radius of the circumcircle of A AYZ, where ¥, Z are
the points of contact of the incircle and the sides CA, AB, is 1AL
8, Prove that r,=4RsintdcosiBcosdC and write down the
corresponding results for ry, #;.
9, In A ABC, I is the incentre and I, the excentre opposite A.  Prove that
the circle BIC passes through 7, What is the centre of this circle?
10. The internal bisector of 7 A of A ABC meets the circumcircle again
at P, prove that AP =3(b + ¢} sec +A.
il. 4B is a chord of a circle centre C. Prove that two excentres of
A ABC lie on the circle.
12, In AABC if ry =2r, prove that b+¢=3a.
13. If H is the orthocentre of A ABC, prove that AH + BH+ CH=2(R+r).
14. In AABC the circle BIC passes through the circumcentre 0. Prove
that this circle also passes through the orthocentre of A ABC.
15, Show that ry+ry+ry— r=4R.
16. A’, B, C' are the mid-points of the sides BC, CA, AB of A ABC and
I, J are the incentres of triangles ABC, 4’B'C’. Show that AI=24J. I G
is the centroid of A ABC, prove: {0 1, G, J are collinear; (if) 3/G =21\
17. In triangle ABC, £ A is obtuse. Prove that the orthocentre H is an
excentre of the pedal triangle DEF.
18. In A ABC the line A7, meets the circumcircle again at P.  Prove that
PB=PC=PI,
19. Al Bi, €1 are produced to meet the circumcircle of A ABC again in
P, O, R respectively. Prove that [ is the orthocentre of APQR.
20. With the usual notation, prove that the radius of the circle I/, is
equal to 2R,
21, Given the points £, I, I, show how to construct the triangle ABC.
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Concurrency and collinearity

Definition. Two segments 4B, CD of the same line or of parallel
lines are said to have the same or opposite sense or sign according
as the directions 4 — 8, C— D are the same or opposite, ¢.2. in
Fig, 26, AB, AC, AD, CB, BD all have the

same sense, and in consequence ratios such 7} = & 5
as AB 4D positive Fie. 26.
CR BD '
. . AR .
The segments 48, DC have opposite senses and the ratio ])_1(32‘ is
negative,
Ex. 12. If P, Q divide AB internally and externally in the ratio 5: 2, find
e rais 22, 4, BP
reieS PR OB 4B K 5 &
Fig. 27,
Tie ratio in which P divides AB is 0.
AP 5
Hence PE=32
The ratio in which © divides 4B is 'é—QB The numerical value of this ratio
is £, but as AQ and OB are of opposite senses,
AQ_ 5
0B~ 2

. BP, . 2

The ratio 4B readily seen to be — 5

N.B. When sign is taken into account it is important to note that

there is only one point which divides a given line in a given ratio.

In the previous example P divides AB in the ratio 5:2 and Q in the
ratio —5: 2.

Ceva’s theorem. If points L, M, N are taken on the sides BC, CA, AB
of a triangle ABC so that the lines AL, BM, CN are concurrent in some
point O, then

BL CM AN_
LC MA NB

Consider the two possible cases, Fig. 28 (), where O is inside the

triangle, and Fig. 28 (5}, where O is outside the triangle.

First deal with the signs of the separate ratios and their products.

. .  BL CM AN o .
In Fig. 28 (a) all the ratios I WA Wg 2T positive, and their

+1.

product is positive.
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CM .
In Fig. 28 (b) ratios - LC NB are each nepgative and ratio MA S

positive, therefore their product is once more positive.

FiG, 28.

Now consider only the magnitudes of the ratios and ignore their
signs. In both figures, we have

BL area ABLA, BL area ABLO

LC area ACAL ™50 I¢ area ACOL

. BL ABLA—ABLO _ ABOA aumericall
*+ IC ACAL—LCOL™ ACOA y
CM_LCOB AN_LA0C | ericall
MA D~AOB NB ABOC ¥
ABOA ACOB . /'_\Allfijg'=
ACOA AAOB ABOC
Combining the sign and magnitude results,
BL CM AN
IC MA NB
Converse of Ceva’s theorem. If the points L, M, N on the sides
BC, CA, AB of a triangle ABC are such that
BL CM AN_  ,
EC MA NB '
then the lines AL, BM, CN are concurrent.

For let AL, BM intersect in ¢ and suppose CO meets AR at a point
N’ different from N.

Similarty,

But

1.

=+1.

. BL CM AN’ _ |
By Ceva’s theorem, c MaA’ N_’B_Tl'
Using this result and that given, it follows that
AN'_AN
N'E NEB

and in consequence N' must coincide with N, as when sign is taken into
account, there is only one point dividing a line in a given ratio.

This eonverse thecrem has important applications to the solutions
of problems requiring the concurrence of three lines,
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kx. 1). The incircle of HABC touches BC, CA, AB at X, Y, Z
respectively.  Prove that AX, BY, CZ are
concurrent,

AsAY=AZ, BZ =RBX, CX—CY(equal tangents),
BX CY AZ

e Vi 2R =] numerically.
Also all three ratios are positive, so the praduct . 4 -
is positive and the required result follows by the Fio. 99

converse of Ceva’s theorem.

Ex, W4, A circle cuts the sides of AABC internafly, BC at Py, Py;
CA ar Q,, Q.; ABat Ry, R,. If AP,, BQ,, CR, are concurrent, prove that
APy, BQ,, CR, are also concurrent.

We have
BPI C{;;’1 AJR1 ﬁPo C Qz AR,
PIC QlA R.B (PQC QzA RQB)

_BP,.BP, CQ,.CQ, AR,.AR,

TRB.RB PC.PC QA. QA
=1 numerically,

as BP,. BP,~R\B. R,B, etc. (intersecting chords Fia. 30,
theorem).
BP, COy AR, _ X
t
Bu P, Yol Ql y, R1 B 4-1 (Ceva’s theorem)
BP, CQ., AR,

and as each of the ratios y s : is positive, it follows that their

P.C 0,4 R.B
product is +1.
Hence by the converse of Ceva's theorem, AP,, BO,, CR, are concurrent.
Menelaus’s theorem. If a transversal LMN meets the sides BC, CA,
AB of a triangle ABC at L, M, N respectively, then
BL CM AN _
LC MA NB
The transversal will either cut one side externally, Fig. 31 (a), or all
three sides externally, Fig. 31 (d).

-1




MENELAUS'S THEOREM 17

BL .
WA NB e positive and 7= ic is negative,

BL CM AN
In Fig. 31 (5) ali the ratios IC ¥MA NB
. In both cases the product of the three ratios is negative.

Let py, ps, p; be the lengths of the perpendiculars drawn from 4, B, C
respectively to the transversal LMN.
Then in both cases, by similar triangles,
BL p;, CM_p,. AN _py

Ic P_a m:p_l NB 13(nun-u::m:ally)

In Fig. 31 (a) the ratios —— CM AN

are negative.

But P2 Ps P
Ps D1 Pz
Combining the sign and magnitude results,
BL CM_AN_ .
LC MA NB '

Converse of Menelaus’s theorem. If points L, M, N on the sides
BC, CA, AB of a triangle ABC are such that
BL CM AN_
LC MA NB
then L, M, N are collinear,
For suppose the line LM meets AB at N'.
Then we have the two results
BL CM AN _ _ .
IC MA NB - 1 {Menelaus’s theorem}
and BL CM AN_ (given)
LC MA NB :
. AN'_AN
" NB NB
and hence N’ and N coincide and L, M, N are collinear.
This converse theorem has important applications to the solutions
of problems involving the proof of the collinearity of three points.

-1,

Ex. 15. Prove that the points in which the external bisectors of the angles of
a trigngle meet the opposite sides are collinear.

Let the external higsectors of the angles A, B, C of /A ABC meet the opposite
sides in X, ¥, Z (Fig. 32).

Then by the bisector of an angle theorem,
BY_ _BA CY_ _BC AZ__AC
XC~ TAC' YA BA ZB  BC

BX C }’ AZ
Hence YC Vi ZB™ ~1 and the re-
quired result follows. Fig. 32.
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Ex. 16. A transversal cuts the sides AB, BC, CD, DA of a guadrilatera!
ABCD at P, O, R, § respectively. Prove that

AP BQ CR DS_

PB QC RD S4

Join AC (Fig. 33).
Then in & ABC, by Menelaus’s theorem,

AP BQ CX_
PB QC XA~

Similatly in A ACD,

CR DS AX _
RD SA XC~

CX AX
Multiplying these two results and noting that ¥4 XC- =1,

we have AR B—Q CR DS
PB oC RD 854

Many examples are solved by the combined use of Ceva's and
Menelaus’s theorems as itlustrated below.
Ex. 17. Points X, Y are taken on the sides CA, ABof ANABC. If BX, CY
meet af Pand AX: XC=BY: YA =1:2, find the value of the ratio BP: PX.
Let AP meet BC at Z (Fig. 34).
By Ceva’s theorem, in A ABC
B.Z C X AY
ZC XA YB
BZ 22 . BZ I

CZcT1T 7 ZeTA
Now applying Menelaos’s theorem to 4 XBC B

=+1.

= 1.

with transversal ZPA, Fia. 34
BZ CA XP_ 1
ZC AX PB-
But BZ_1 CA_ 3 . XP_4
ZC 4 AX T B 3
Le BPIPX=3:4,

EXAMPLES 1d

1. Use the converse of Ceva’s theorem to prove: (i) the medians,

(ii} the internal angle bisectors of a triangle are concurrent.
2, If AD is an altitude of /A ABC, prove that BD: DC =cot B: cot C and
write down similar results for the other altitudes. Deduce that the altitudes

of a triangle are concurrent.
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3. Points M, N are taken on the sides CA, AB of A ABC such that
CM: MA=1:3 and AN: NB=1:2. If NM produced meets BC produced
in L, find the ratio BL: CL.

4, ABC is a triangle; L divides BC externaily in the ratio 5:2 and
M divides CA externally in the ratio 4: 3. If AL, BM intersect at O, find
the ratio in which €0 divides AB.

5. In AABC, BC=2CA; the internal bisector of angle ¢ meets ABat X
and 44" is a median. If A’X meeis CA produced at Z, prove that A4 is the
mid-point of CZ. Tf also AA’, CX intersect at O and BO cuts CA at ¥, prove
that ¥ is a point of trisection of CA.

6. Prove that the lines jeining the vertices of a triangle to the points of
contact of an escribed circle are concurrent.

7. Points E, Fon the sides CA, AB of /A ABC are such that FE is parallel
to BC; BE, CF intersect at X. Prove that AX is a median of AARC.

8. The external bisector of angle 4 of A ABC meets BC produced at L,
and the internal bisector of angle Bmeets CA at M. If LM meets A8 at R,
prove that CR bisects angle C.

9, Lines concurrent in the point  are drawn through the vertices 4, B, C
of a triangle ABC and meet the opposite sides at D, E, Frespectively, Given
that 2BD =3DC, CE =3EA, find the ratios AQ: OD and CQ: OF.

10. In a trapezium ABCD, AB is parallei to CD. If AD and BC produced
intersect at X and the diagonals intersect at ¥, prove that X'Y bisects 4B5.

11. In A ABC, A’ is the mid-point of BC and P is any point on A4, If
BP meets CA at § and CP meets AR at T, prove that TS is paraliel o BC.
Hence, given a triangle 48C and a line parallel to BC, construct the median
AA’ using only a straight-edge and a pencil.

12. ¥f Pis any point inside a triangle ABC, prove that the external bisectors
of angles BPC, CPA, APB mest BC, CA, AB respectively in three collinear
points.

13. The altitudes of a triangle ABC are AD, BE, CF. The perpendiculars
from A, B, C to EF, FD, DE respectively meet BC, CA, ABat X, ¥, Z.
Prove that BX: XC=sin /. BAX:sin £ XAC =cos C: cos B.

Using similar results for CY: Y4 and AZ:Z85, deduce that the lines
AX, BY, CZ are concurrent.

14. AD is an altitude of a triangle ABC right-angled at A. Prove that
BD: DC=AR®*: AC® by expressing the ratio of the areas of triangles ABD,
ACD in two ways. If AB: AC=3:4 and the median BB’ cuts 4D at X,
find the ratio AX: XD,

15. G is the centroid of AABC and AG is produced to F such that
GP=AG. Parallels through Pto BC, CA, ABmeet CA, AB, BCatL M, N
respectively. Prove that L, M, N are collinear.

16, The incircle of triangle ABC touches BC, CA, ABat X, Y, Z. If ¥YZ
is produced to meet BC produced at L, prove that BX: XC =BL: CL.

17. ABCD is a quadrilateral. Prove that the line joining the mid-points
of the apposite sides AB, CD divides the other two sides in the same ratio.

18, Points D, E, F on the sides 8C, CA4, AB of a triangle ABC are such
that 4D, BE, CF are concurrent. If EF meets BC at X, prove that
BD: DC=8K:CK,
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19. The tangents to the circumcircle of A ABC at A, B, C meet the opposite
sides at P, O, R respectively. Prove: (i) BP: CP=AB%: AC%;, (i)P,Q,R
are collinear.

20. A trangversal meets the sides BC, CA, AB of a triangle 4BCat P, Q, R
respectively. Points 2, @', R’ are taken on BC, CA, AB so that BP=P'C,
CO=0'A, AR=R'B. Prove that ', (', R’ are collinear.

21, A, B, " are the mid-points of the sides BC, CA, AB of a triangle.
AP, BQ, CR are concurrent lines through A4, B, C which meet the opposite
sides BC, CA, ABat P, Q, R respectively. If C'Q meets BC at X, 4'R meets
CAat Yand BPmeets ABat Z, prove: (D BX: CX=AQ: OC;, (ihXY,Z
are collinear.

22. ABRCD is a quadrilateral and X, ¥, Z are any points on BC, 4D, AB
respectively. ¥Z meets BD at R; KX meets DCat 5, ZX meets AC at .
Prove that ¥, Q, § are collinear.

23, P is any point in the plane of AA4BC. Through the mid-points
A, B, C of BC, CA, AB lines are drawn parallel to PA, PB, PC respectively.
Prove that these lines are concurrent.

24. P is any point inside a triangle ABC. The lines AP, BP, CP meet
BC, CA, AB at L, M, N respectively. MN, NL, LM meet BC, CA, AB at
X, Y, Z respectively. Prove that X, ¥, Z are collinear.

Simson’s line. If P is any point on the circumcircle of a triangle ABC
and if L, M, N are the feet of the perpendiculars from P to BC, CA, AB
respectively, then I, M, N are collinear.

Referring to Fig. 35,

as LPMAd=LPNA=%"°,
quad. PMAN is cyclic.

. L PNM=/PAM
=/ PBL, since PACB is cyclic.

But quad. PBLY is cyclic, of Y A
50 ZPBL+ £ PNL=180° \_/
. LPNM+ £PNL=180°

and hence LNM is a straight line. Fig. 35.
The line LMN is called the Simson line or pedal line of P with respect
to the triangle ABC.

Converse theorem. 1f P is a point in the plane of a triangle ABC such
that the feet of the perpendiculars from P to the sides of the triangle are
collinear, then P lies on the circumcircle of triangie ABC.

For consider Fig. 35 with the circumcircle assumed omitted and
LMN being given as a straight line.

As before £ PNM=/PAM,
also /. PNM=ZPBL, since quad. PBLN is cyclic.
- ZPAM=/PBL,

and so the points P, A, B, C are concyclic.
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Ex. 18. Prove that the circumcircles of the four triangles formed by four
intersecting straight lines have a commnon point.

The four triangles formed by the four
straight lines ABE, BCF, DCE, ADF are
triangles ABF, AED, BREC, CFD (Fig. 36.) LY

Consider the circles ABF, AED which
have A as one common point; let the D
second common peint be P.

As P lies on the circle ABF, the feet of < ;
the perpendiculars X, ¥, Z from P to the R X
sides of A ABF are collinear (Simson line).  “/ \-/B \

Also as P lies on the circle AED, the feet
of the perpendiculars X, W, Z from P to the Fic. 36.
sides of A 4AED are collinear (Simison line).

Hence the four points X, ¥, Z, W are collinear.

.. By the converse of the Simson line theorem, as X, W, Y are collinear,
F lies on the circle BEC and as ¥, Z, W are collinear, P lies also on the
circle CFD.

p

-

Direction of a Simson line. In Fig. 37, LNAM is the Simson line of P
with respect to a triangle ABC.

The perpendicular PL is produced to meet
the circumcircle of A ABC again at L',

Then /ABP=/ AL'P (same segment)
and LABP=/ PLN (same segment
as quad. BLNP is cyclic).
s LAL'P=LPLN,

and hence L' A is parallel to LNM.

Thus the Simson line of P is parallel to
the line joining vertex A to the point where the U
perpendicular from P to side BC meets the Fia. 37.
circumicircle again.

If M’ and N' are defined in a manner similar to L', it follows also that
the Simson line of P is parallel to each of the lines AL, BM', CN'.

Ex. 19. If AB, an altitude of AABC, Is
produced fo meet the circumcircle again at K, prove

that the pedal line of K with respect to the iriangle A
is parallel to the tangent at A to the circumecircle.
Using the result just proved, the pedal or
Simson line of X is parailel to the line joining A
to the point where the perpendicular from X to
side BC meets the circumcircle again. As KD
a\_/"

is this perpendicular, the required point is A
itself. So the pedal line of X is parallel to the
line joining two coincident points at 4 on the
circumgcircle—i.e. the tangent at A4. Fia. 38.
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Ex. 20. P, Q are any two points on the circumceircle of a wiangle ABC. If
O is the circamcentre, prove that one of the angles between the Sinwson lines of
P and Q is equal 10 £ POQ.

In Fig. 39, PLL’ and QU are both drawn
perpendicular 1o BC.

. The Simson lines of P and (O are
respectively parallel to L'A and 074, and
consequently ZL'AU’" is one of the angles
between the Simson lines.

But, by symmetry, the arcs cut off by parallel
chords of a circle are equal, and as chords
PL’, QU are parallel,

arc PQ =arc L'U". FiG. 39.
.. As equal arcs subtend equal angles at the circumference,
LL AU =L PBQ =1/ PCQ,
and hence the required result.

The Simson line and the orthocentre

To prove that the Simson or pedal line of a point P bisects the line
joining P to the orthocentre H of triangle ABC.

In Fig. 40 the altitede AD produced mests
the circumcircle again at H' and PH' meets
BC at X; HX produced meets PLL" at L"".

As HD=DH' it easily follows that
AHXH is isosceles.

Noting that PL” and HH' are parallel, it
follows further that APXL" 15 also isosceles.

Ie. PL=LL".

Also ZAH'P=/ AL'P (same arc),
and LAH'P=/L"PH =/ HL"P.
L LALP=LHL'P, Fiu. 40,

and hence I H is parallel to L' A and so to the Simson line of P.
As L is the mid-point of PL", it follows that the Simson line of P
(Le. the line through L parallel to L”H) bisects PH.

EXAMPLES 1l¢

1. What are the Simsen lines with respect to a triangle A BC of the vertices
A, B C?

2. If triangle ABC is right-angled at A4, identify the pedal lines of 8 and C
with respect to the triangle.

3., Points P, @ on the circle ABC are such that PQ is perpendicular to BC.
Prove that an angle between the Simson lines of P and Q with respect to
the triangle ABC is equal to ZPAQ.
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4. Given a triangle ABC, show how to find a point P on its circumcircle
such that its pedal line with respect to the triangle is parallel to the diameter
of the circumgcircle through B.

5. The pedal line of P with respect to £\ ABC is parallel to the diameter
of the circumcircle through 4. Prove that PA is parallel to BC.

6. If PQ is a diameter of the circumcircle of a triangle ABC, prove that
the Simson lines of P and & with respect to the triangle are perpendicular.

7. If AD, an altitude of /A ABC, is produced to meet the circumcircle
again at P, prove that the Simson line of P makes an angle with AC equal
to angle B of the triangle.

8. If /is the incentre of A ABC and AJ produced meets the circumeircle
at X, prove that the Simson line of X with respect to the triangle is perpen-
dicular to AX.

9, Pis a point in the plane of a given triangle ABC such that the feet of
the perpendiculars from P to the sides of the triangle are collinear and such
that P lies on the median through 4. Find the position of P.

10. The triangle ABC is right-angled at 4. The pedal line of a point P on
the circumcircle meets AP at O. Prove that AP is perpendicular to the
diameter through Q.

11, ABC is an obtuse angie and P lies on the minor arc AR of circle ABC
such that 4P is perpendicular to BC. If M, N are the feet of the
perpendiculars from P to Cd, AB respectively, prove that the triangles
AMN, ABC are similar.

12. Show how to find the position of a point P which has a pedal line with
respect to a given triangle paralie! to a given line.

13, If PQ is a chord of the circumcitcle of & ABC which is parallel to BC,
prove that the Simson line of P with respect to the triangle is perpendicular
to AQ.

14. L, M, N are the feet of the perpendiculars from a point £ on the
circumcircle of the triangle ABC to the sides BC, CA, A8 respectively.
Prove that the triangles PLN, PAC are similar. If P is the miid-point of
minor arc AC, prove that LM LN =AB: AC.

15. The perpendiculars from a point P on the circurncircle of triangle 48Cto
the sides BC, CA, AB meet the circumeircle again in L', M, N’ respectively.
Prove: (i) M'N"=BC; (ii} triangles ABC, L'M‘N’ are congruent.

16. The altitude AD of triangle ABC is produced to meet the circumeirele
at Y. The line joining X to any other point on the circumcircle meets BC
at . Prove that the join of U to the orthocentre of the triangle is parallel
to the pedal line of P.

¥7. ABCD is a cyclic quadrilateral with AB parallel to CD. If P is any
point on the circumcircle of the guadrilateral, prave that the feet of the
perpendiculars from P to AC, AD, BC, BD are concyclic.

18. The pedal line of a point P with respect to A ABC meets BC at L and
the altitude AD at XK. If H is the orthocentre of the triangle, prove that PX
is parallel to LH.
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19. The altitudes 4D, BE, CF of AABC meet the circumcircle of the
triangle again at D', E', F’. Prove that the pedal line of 4 with respect to
A DYE'F’ is parallel to BC.

20, Friangle ABC is obtuse-angled at C; P is any point on the minor arc
CA of the circumcircle of the triangle. The perpendiculars from P to the
sides meet BC produced, CA, AB at L, M, N respectively. Prove that
triangles PLM, PAB and triangles PMN, PRC are similar. If LM =MN,
prove that PA: PC=AB: BC.

21. H is the orthocentre of an acute-angled triangle 4BC. If P is any

point on the circle BCH, prove that the Simson line of P with respect to
triangle BCH bisects AP,

MISCELLANEOUS EXAMPLES

1. 1f in the triangles ABC, DEF the angles 4 and D are equal and BC is
greater than EF, prove that the radius of the circumcircle of triangle 48C
is greater than the radius of the circumcircle of triangle DEF.

2. In triangle ABC the perpendicwlar bisector of BC meets CA at P and
ABat Q. Provethat OP . O0Q =0 A% where O is the circumcentre of /A ABC.

3. If H is the orthocentre of the triangle ABC, prove that

AH%+ BC® = BH?+ CA: =CH?+ AB®,

4. A point D is taken on the median A4’ of a triangle ABC; BD meets
CA at X and CD meets ABat Y. Prove that XY is paralle] to BC.

5. 4, B, C, D are four points in order on a straight line such that
AB.AD=AC: 1f Pis any point on the circle centre A, radivs AC, prove
that PB: PD=AR: AC.

6. A point E is taken on the diagonal AC of a parallelogram ARCD. If
F is the second point of intersection of the circles E48, ECD and R,, R, are
the radii of these circles, prove: (i) Flies on BD; (i) R,: R,=AF: FC.

7. Points P, @, R are taken on the sides BC, CA, 4B respectively of a
iriangle ABC such that BP: PC=CQ: QA=AR: RB=1:3. IfAP, BQ, CR
meet in pairs at U, V, W, prove that VW AP=WU : B0 =UV:CR=8:13,
the elements of the ratios being in the same straight fines.

8. H is the orthocentre and O the circumcentre of the triangle ABC, If
A’ is the mid-point of BC and HA’ produced meets the circumcircle at P,
prove that H4"=A'P and that PR is perpendicular to AB.

9. ABC is a triangle, right-angled at B. If the incircle of the triangie
touches AC at Y, prove that 24Y . YC=dAB . BC.

10. Prove that an external common fangent to two circles divides the line
of centres externally in the ratio of the radii. Hence show that the points
of intersection of the three pairs of external common tangents to three circles
taken two at a time are collinear.

1. ABCDisaquadrilateral. Show how tofind a point on the circnmcircle
of the triangle 4ABC whose pedal line with respect to triangle ABC is
perpendicular to CD,
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12, 1, I, Iy are the centres of the escribed circles of triangle ABC opposite
to A, B, C respectively. Prove that the perpendiculars from K, F,, I, to
BC, CA AB respectively are concurrent.

13. If 1 is the incentre of triangle ABC and [, I, fy the excentres opposite
A, B, C respectively, prove:

() rsin £ AIR—¢sin 44 5in 458; (i) 1, =4RsiniA4 =gseciA;
(iii} fI;=4R cos +A.

14. The internal and external bisectors of the angle A of trianglte ABC cut
BC at X, Y respectively. Prove: () belb+¢) =bBX*+ cCX2+ (b +O)AX",;
(i) be=AX*+ BX.CX; (i) bco(c-5)=hBY*- eCY 4+ (b— )4 Y2

15, If H is the orthocentre of triangle ABC and the circle BCH touches
CA and AB, prove that triangle 4 BC is equilateral.

16, P is a point on the circle 4BC. If the perpendicular from A to the
Simson line of P with respect to triangle 4BC meets the circumcircle again
at @, prove that PO is parzllel to BC.

17. AD, BE, CF are the altitudes of triangle ABC. Prove that the area
of triangle DEF equals 2A cos 4 cos Bcos C, where A is the area of
triangle ABC.

18, If X is a point on the diagonal AC of a parallelogram ABCD, prove
that parallels to BX, DX drawn through C, A respeciively, intersect on BD
produced.

19. If O is the circumcentre and G the centroid of triangle ABC, prove that
OG =R - Ha?+ b2+ ¢P).

20, Triangle ABC is right-angled at 4; AD is an altitude and P, Q are
the incentres of triangles ABD, ACD respectively. Prove that triangles
PDQ, ABC are similar.

21. If H is the orthocentre of a triangle ABC, prove that the radii of the
circumcircles of the triangles ABC, HCA are equal. If O, S are the centres
of these circles, prove that 0§ and AC bisect each other at right angles.

22, The side CB of a square ABCD is produced to P so that BP =2CB,
M is the mid-point of AD. If AC, BM intersect at X and PX meets 4B at
Q, find the ratio AQ: QB.

23, P, {, R are the mid-points of EF, FD, DE, the sides of the pedal
triangle of a triangle ABC. Prove that AP, BQ, CR are concurrent,

24, The inscribed circle of a triangle ABC touches the sides at A, ¥, Z.
Prove that, with the usual notation, the area of trangle XYYZ =rA/2R.

25. The triangle ABC is equilateral and A’ is the image of A in BC. If P
is any point on the circle centre A, radius 4°C, prove that PA® =PB%+ PC?,

26. PQ is a chord of the circumcircle of the triangle ABC parailel to AB.
Prove that the Simson lines of P and Q with respect to the triangle intersect
on the altitude CF.

27. Prove that the only point P in the plane of a triangle ABC such that
PAY+ BCY =PBY + CA' =PCt + AR, is the orthocentre of the triangle.
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28. The internal bisector of angle 4 of a triangle A8C meets BC at P, The
circle which passes through A and touches BC at P cuts CA at X and
ABat Y. Prove that XY is paraltel to BC.

29. Show how to construct a triangle given: (i) the lengths of two sides
and of the median which bisects the third side; (ii) the nine-point centre,
the orthocentre and one vertex.

30. ABCD is a cyclic quadrilateral; H, X are the orthocentres of the
{riangles ABC, ABD. Prove that 4, B, H, K are concyclic.

31, ! is the incentre of a triangle ABC. The incircle touches the sides
BC, CA, AB at X, Y, Z respectively. If XI, YI, ZI meet YZ, ZX, XY
respectively at L, M, N, prove that AL, BM, CN are concurrent.

32. A circle touches the side BC of a triangle 4BC at its mid-point 4’ and
cuts CA at P, P"and ABat @, 0. If PQ, P'Q’ meet BC at R, R’, prove by
using the theorem of Menelaus or otherwise, that BR: CR=CR': BR',

33. If I I, I, I3 ar¢ the ingentre and excentres of a triangle 4A8C, prove
that the circumeircles of triangles IL 1, 1,11, are equal.

34. With the usual notation for a triangle ABC, prove that
TH®=2r®~4R®cos A cos Beos C.

35, ABCD is a trapezium with AB parallel to DC; the diagonals AC, BD
meet at E and CB meets D4 at X. A line through E parallel to A8 mests
AD at Fand BC at . Prove that AG, BF, EX are concurrent.

36. The points P,  are at the ends of a diameter of the circle ABC. Prove
that the Simson lines of P and @ with respect to the triangle 4B8C intersect
at right angles on the nine-point circle of the triangle.

37. ABCD is a quadrilateral and P, @, R are points on BC, AD, 4B
respectively, RO meets BD at X; XP meets DC at ¥; RP meets AC at Z,
Prove that @, .Z, Y are collinear.

38. A transversal LMN of triangle ABC meets the sides AB, AC internally
at L, M respectively and the side BC produced at N. ¥ BM, CL intersect
at X and AX meets BC at ¥, prove that ¥, & divide BC internally and
externally in the same ratio.

39. For the four triangles formed by four intersecting straight lines prove:
(i) the circamgeircles of the four triangles have a common point; (i) this
common point has a common Simson line with respect to each of the four
triangles; (iii) the orthocentres of the four triangles are collinear.

40. ABC is a given triangle. Find a point P in its plane for which
PA:+ PB4+ PC? has a minimum vahie.

41, If three equal circles have a common point 4, prove that 4 is the
orthocentre of the triangle formed by the other three points of intersection.

42, 1isthe incentre of a triangle ARC and F,, /5 are the excenires opposite
B, Crespectively. Perpendiculars H.X, H Y are dropped from the orthocentre
H to the lines A1, I,f,. Prove that XY bisects BC,



CHAPTER 11

ALGEBRAIC METHODS

Basic identities. The following results are important:
L (x+a)(x+b)=x2+x(a+b)+ab.
(x+a}x+b){x+cy=x*+ x*a + b+ c) - x(bc+ catab)

'J’abca
(x+a)x+b} ... nfactors=x7+x?2 Ja+xr2>ab-

. (a+h}a—b)=a®—b%
(a+b)?=2a2+b2+2ab,
(a+h+e)P=2a2+1+cf+2(be+ca+ab)
(a+b+c+ .. .nterms)’=Ya?+2>ab.

Ex. 1. Expand (a—2b - 0",

(a-2b- ) =gt + (- 20)%+ (- )%+ 2{( - 2b)( ~ &) + (- Ha} + (a)} - 25)]
=+ 42+ 2 + 4bc— 2ca — dab.
Ex. 2. Prove that
a2+ b% — 2ab)a® + b2+ 2ab)a* + Y+ 2a°H%) =ab + b° - 2a'M.

As (a%+ b 2ab)(a®+ 62+ 2ab) =(a + b2} — (2ab)?

=gt + B - 2400,
LS. =(a'+ »* - 2a76%a? + b* + 2a%H%)

=(at + b%)? - (25%F3)°
—ab+ b¥ - 2ih,

Ex. 3. Find the sum of the products, taken twe af a timie, of the first n natural
numbers.

We have (En)g =S nt+ 2 {sum of products taken two at a time},

Le. sum of products =-§{(Zﬂ)s - Enn}
=L{dnin + 1)2 - Inln+ D)(2n+ 1)}
=gen(n+ 1)3n(n+ 1) - 2(2n+ 1)}
=ztnin+ - 1)(3n+ 2).
iI1. (a+b)®=a®+h*+3(a’b+ ba).
(a+hb+cP=a+b3+ e+ 3{a%b+c) b c+a)

+ ¢*(a +b)} + Gabe.
(a+b+ct...mterms) == Yas+33 a’h+ 6D abe.

27
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Ex. 4. Simplify 8¢® + (b- ¢)*+ (c - b - 2a),
Write (c-b-2a0° as -[2a+(d-0P.
Expression =80° + {6 - ¢)* - [Ba® + (b - c)* + 12a2(b — &) + 6alb — c)*]
— —126%b - ¢) - 6alb - o)
= —6a(b— cW2a+b-c).

1V. If n is a positive integer,
(g+b)°=a"+ma" 1 h+ n—mi;—l-la“’s b2+ ... +b~

For the smaller values of », the coefficients in this expansion can be
found simply by using Newton's Rule, which is illustrated below.

Coefficients
Each number in the diagram (a+5)? 1 2 1

is the sum of the number above {a+ &) 1 3 3 1

it and the ome immediately {(a+5)* l>4>6->451

to the left. ¥ ¥ ¥+ ¥
(at+bh)F I 51010 5 1

Ex. 5, Expand (x - 2y)%
The coefficients ate 1, §, 10, 10, 5, L.
S (o= 29 = 1054 504( - 2) + 10x3( - 2y) + 10x3(~ 298+ Sx( — 2
+1(~ 2y
=x0 - 10xy + 40x7)7 - B0x%)% + B0xp* — 325,
Important factors. The following results should be known:
L a®—bi=(a—b)(a+b).
1L 2+ b%= (2 + b)(a? — ab + b?).
a®—b3=(a - b)(a%-+ ab+b?).
HL. 2%+ b*+¢®—3abe=(a - b+ c}[a® + b2+ ¢~ (be + ca -+ ab)]
or (&+-b+c[(b—e)*+(c—a) - (a—by)
Sa*-3>abe—Da [za” - Zab].
Iv. a'—b*~(a—b)}a+b)(a%+b?),
at+ b* = (a% - b%)* — 2ah?
={a%—4/2ab -+ b*)(a® + 1/ 2ab + b?).
at +ath? + b= (a2 + b%)2— a%ph®
={(a®—ab+b*)(a®+ab+ b?).
Ex. 6. Factorise: () (x+3y - 22)* - 42x - Iy + 2)%; (i) B(a -~ 2b)° - (2a+b)°.
(i) Expression

=[(x+3y - 22)- 2(2x - 3y + )(x + Iy - 22) + 2(2x - 3y + 7))
={-3x+9y—4z}{5x - 3y).
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(ii} Expression

={Na - 2b) - (2a + B)l{#a - 26¥ + 2a - 20} 2a + b) + (2a + b))
=[—5b][12 ~ 1Bab+ 135%].

EX. 7. If a+b+¢=0 and &+ P+ c2=0, prove that at least one of the
nmbers a, b, ¢ is zere.

The expression @+ 5%+ ¢* is usually associated with the Factorisable
expression a® -+ 5 -+ ¢ — 3abe.

We have B+ B4 8- 3abe =la+ b+ X+ Bt + 2 — be - ca- ab).

But B+ =a+b+e=0.

S dgbe=0.
Hence at least one of the numbers a, b, ¢ is zere.

Ex. 8. Rationalise the demominators of the fractions (1) —2—\—,;:-3;

: 1 L
1)) VAV (it} BT
. i 2v3+V/5 _2v3+vS
O A BV 1
i 1 _ 1+4/3+4/2 _ 13442
W T AT A T3 v +v3+vD (+v3IP-2
_1v34v2 (/342K - V/3)

C O 201+v3) -4
___2—1/2+ 1/6'

1 1

V3i-v2 33
~ b adab 28 _3*+6*+2*
Tailahatisidih 3-2
—3t gte0d

(iii)

EXAMPLES 2a

1, Expand (x + 1}x + 2}(x + Ix + 4).
2. Square a—- b+ 2c,
3, Verify the identity (2a+ 36+ 2ab -+ (3a -+ 2b)* = 13(a+ b,
4. Pactorise: (i) 4a— b+ -Nb—a-o)*; (i) (x+2) - (2x-y);
(i) (a2+ 692 - 3a°H7; (iv) 8a* + b8 - 224+ b).
5. Write down the expansion of (2 - x)%
6. Simplify (a+b+cf-(b+e-al~{c+a-bf-(a+b-O
7. Expand (x—y+2:0% )
8. Simplify: ® (v2+ 1 - (v2- 1S “”{vmixr'(vo+1v'
1

T_
9. Show by division that ’;_—1 =+l xf et raf i1,
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10. Express with rational denominators:

N R I
LV sy, LR v Wl P LI e |
11. Substitute x=b+c-w, y=c+a-b, z=a+b-c in the following
expressions and simplify the results:
(D x+p2+2% (D) 2+ 2t pz 4z 1 x
12. Prove that x*+2x*+9=(*+3)®-4x% and hence factorise the
expression.
13, Factorise 2x2+xy-»* and 2x%+xy— 32+ 9x-6y- 5.

. . 1 b 1 5
14. Simplify (\/3 — \/2) + (\/34"\/2) .
15, Find the square roots of: () 2*- 622+ 13x% = 12x +4;
(i) 4at+4a®b — 112252 - 6ab® + 9b%,
16, If x = — (¥ +z), prove that x*+ 3+ 2% =3xpz.

A a? 1+ b
17. Simplify i

18, Factorise: (i) x*-27-9x*+27x; (i) a”+2'.-'—2:+9b;
(iii) x*+2x%+ 4, .

19. Prove that (3 ~ 23+ (2 - xPF+{x - P =3y - 2z - xXx - y).

(x+a}(x+b)+(}'+a)(y+b)+(z+a}(gib_)_

x-yx-2) (y-00p-2) (-x)Nz-y)

21, If x>0and x4§=1, prove that x+i=a\/5 and evaluate: (i) x’—l;

20. Simplify

(i) 2%+ L.
X
22, Express x*— 2x*+ Tx — 4 as a product of two quadratic factors.
23. If the function ax®+ 2bx + ¢ can be expressed in the form
ACx - %, P+ B(x - x0%,

where A, B are constants, prove that ax x, + b(x; + x5) + c =0,

24, If x+y+z=2, x*+y*+2%=4, 2%+)*+22=5, find the values of:
G yzrzx+xy; (D) xyz.

25. Prove that, if xP=(x)}2=(x?)" for all values of x and y, then
2pr=g(p+r}.

26. The sum s, of » terms of a series is given by s, =1aln + 1)n + 2), write
down s, and find the mth term of the series.

27, Factorise: (i) o+ 3a%6%+9b%; (i) 2% + o*B% + ab®+ ML,
1 ) .
frang as the sum of two partiai fractions.
X3 8yt
- 2_ = — - .=,
29. If x? - 2¥% - xy =0, prove that R 7

28. Express
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30, If  is a positive integer, prove by long division that

xt -1
- =xhlyxn-24 L +x+1.
x-1
7
_ PR Ak R e |
H mpl
ence simplify BraxZex+1

AL. Factorise o?+ 8%+ - 2bec-2ca—2ab by expressing it in terms of
a+b-o"

32, If a, b, ¢ are real numbers satisfying a+ b + ¢ =a®+ ¥ + ¢ = 0, prove
that at least one of o, b, ¢ is zero.

33, Given that x+y+z=4, x24+32+z2=6, xyz=3, find the value of
B4R s

34. Prove that (a®+ 5+ ADE+ )2+ 28 - (ax + by + e2)?

=(ay - bx)3+ (bz - )P+ (ex - a2)’.

, then (22 + B% + e} (x® + 2 + 2 =(ax + by + c2)%.

4
e
y =Kc® - a¥), z=c(a®~ B%), prove that
B+pP+8 Sebred
xyz  ahe

Remainder theorem. [If @ polynomial f(x) is divided by (x—a), the
remainder is f(a)-

As the degree of the remainder must be less than the degree of the
divisor, the remainder in this case must be a constant.

So if the quotient is g(x), it follows that

fx)=(x—ayg(x)+r,

Deduce that, if = =§ -
38, If x=a®® - &),

b+

where r is a constant,
This is an identity and true for all values of x.

Let x=a, Jl@)=0g(x)+r.

Le. Remainder=r=f{a).

As a consequence of this theorem, it follows that if f{a)=0, then
(x—a) is a factor of f(x).

Ex, 9. Factorise x5-1,

As fl1)=1-1=0, x—1is a factor.
By division, the other factor is A+ +at+x+ 1,

Soa=1=(c- DB+t x+ 1)
Ex. 10. Find the values of a and b if (52— x—2) is a factor of
2t +axd -4+ bx - 2.

Method (. As (X®—x-2)=(x-2}x+1), both (x~2) and (x+ 1} are
factors of the expression.
L f=32482-1642b-2=0; 4da+b=-17,
and f(-1)=2~a-4-Hp-2=0; atb=-4.

Hence a=-1, b=-3.
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Method (if). As x®~ x -2 is one factor, it follows from the form of the
given pelynominal that the second factor is quadratic, with 2x% and +1 as
two of its terms.

8o let 2 raxd—dad L b - 2= (3 - x - 22+ Ax 1)

Comparing coeflicients of 22, -4=-3-4; 4=1.
oo The given expression ={x-x-2)2xT+x11),
and hence a=-1b=-3,

Remainder when a polymomial f{x) is divided by (x—a). The
remainder will be 2 linear function of x which can be written in the
form A(x—a)+ B, where 4 and B are constants.

So if the quotient is 4(x),

Six)= (x—a)q(x)+ A(x—a)+ B.

Let x=a.  fla)=58.

Also Fxy=2Ax-a)g(x)+(x—a)g'(x)+ 4.

letx=a. [f@)=A.

Hence the remainder when the polynomial f(x) is divided by (x—a)® is

S (@¥x—a)-+fla).
It follows that (x—a) is a repeated factor of f(x) if f(@)=Fa)=0.

Ex, 11, Prove that (2x - 1) iv a repeared factor of 43 — x5+ 5x2 — dx ¢ 1,
Let Jx) =4x 453+ 5x° —dx 1 1,
SO =163 — 1253+ 10x - 4.
S =-1i-241-0,
and fA=2-3+5-4=0.
Hence (2x - 1) is a factor of the given expression.

Ex. 12, Factorise x*+x-7x*~ 8x+ 4, given that it has a repeated iinear
Jactor.
The repeated linear factor must be a factor of f(x),

i.e, of 42+ 3x3 - 14x-8.

A linear factor of this expression can be found by use of the remainder
theorsm.

By trial, F{-=0.
Also fA-D=0.
s {x+2) is a factor of the given expression f(x).
So if J(0) = (2 + dx+ Dg(o),
g(x) must be a quadratic function containing the terms x% and +1.
Let . L) =(2+4x + At + Ax+ 1),

Equating coefficients of 2%, 1=4+4; A=-3.
Hence the factors are e+ 2P - 3x + 1),
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Factors of symmetrical expressions. A symmetrical expression in
X, ¥, z is one which is unaltered by a cyclic interchange of letters 7 x*}_
E.g. (¥ —z0(y+ 2P + (22 — x®)(z + x*+ (a2 — yPHx+y)* is a symmetrical
function of degree five in x, y, 2.

Similarly, #%(b —c)+b*(c~a)+c*(a—b) is a symmetrical function of
degree four in a, b, c.

TFhe method of factorising symmetrical expressions is illustrated in
the following examples.

Ex. 13. Factorise &*b - )+ b{c - a)+ c¥{a - b).
When b = ¢, the expression = bi(b— )+ bMa-b)=0.
;. (b-0)is a factor.

As the expression is symmetrical in a, b, ¢, it follows that (c-a), (a- 8)
are also factors.

N.B. If putting & = ¢ did not make the expression vanish, we would have
tried b= -rc.

Continuing, as the expression is of the fifth degree and there are three
linear factors, it follows that the fourth factor must be of the second degree.

Also, as the fourth factor must be symmetrical in a, b, ¢, it must be of the

form A(g*+ 8 + ) + B(bc+ ca-t+abh),
where 4 and B are independent of 4, b, c.
Le. Expression = (b - cXc— a){a - Y[ A(a®+ ¥+ &%) + Blbc + ca+ ab)].

To obtain the values of 4, B, give g, b, ¢ simple numerical values, avoiding
those which make any one of the factors (& - ¢), (c - @), (¢ — ) vanish.

Eg. leta=0b=1,¢=2,

then 2-16=(- 12 - DfAQ1 +49+ B(2)); S5A+2B=-T.
leta=0,b=1,¢c=-1,

then ~1-1= @)~ 1X- D41+ 1)+ B(~1D); 44-2B=-2.
Hence A=-1, B=-1

Expression — - (b - eMc — ala - b)Xa® + b* + ¢+ be + ca + ab).

Ex, 14. Factorise (x+y+zP-+z- 3P ~(2+x- - (x+y-2)*
The substitutions y = +z, x = £ (y+ 2) do not make the expression vanish.
Trying x =0, the expression = (y + 2 - (¥ + 2F - (- ¥~ (- 2)' = 0.
‘. x is a factor, and similarly so are y and z.
As the cxpression is of degree three, any additional factor must be a
constant, say k.

So xx+p+2P-(p+z-xP-(z+x- 3P -(x+y— 2P =kxyz.
let x=y=2z=1,
then 27-1-1-1=k; k=24
.. Expression = 2dxypz.
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Highest common factor of two polynomials,

Ex.15. Find the HC.F. of 23 +3x% +3x+1 and x® - x—x - 2.

Dividing 2x*+ 352+ 3x+1 by x*—x*- x-2, the quotient is 2 and the
remainder is 5x%+ Sx+ 5.

2+ I+ 1 =08 - A x-S+ x+ 1)

Consequently, any common factor of the two given expressions must also
be a factor of the remainder, 5(x®+ x + ).

As clearly the given expressions have not a common factor 5, it follows
that the only possible common factor is x® + x + 1.

By division it is readily seen that

279+ 3+ 1 = (24 x+ DR+ 1); 2B -x-2=(C+x+1¥x-2)
S HCF.=x+x+1.

General procedare. Suppose f{x} and g(x) are polynomials with the
degree of f(x) = the degree of g(x).

Consider the long division of f{x) by g(x). This division can be
contimied until the remainder term #{x) is of a smaller degree than g(x}.

If the quotient is ¢{x) we can write

Fxy=g(x) . g(x}+r(x).

1t follows that any common factor of f(x) and g(x) is also a factor of r(x).
Consequently the H.C.F. of f(x) and g(x) is also the H.C.F. of the lower
degree polynomials, g(x) and #(x). This process can be repeaied until
the remainder function is sufficiently simple for its factors, and
consequently the possible common factor of f{x) and g(x), to be readily
discernible.

Ex. 16. Find the HC.F. of 2+ 3+ 3+ x-land x' - x® + 2xE—x + 1.

Dividing the first polynomial by the second, the gquotient is 2 and the
remainder, 3x* - 3x%¥+ 3x - 3.

The factor 3 in the remainder can be ignored, and the problem reduces to
that of finding the HC.F. of 2%~ x*+2x®—x+ 1 and x* - x®+x 1.

Dividing, the quotient is x and the remainder, x2 4 1.

Hence the only possible conmtmon facior of the original polynomials is
x3+ 1, and by division this is verified to be the H.C.F.

EXAMPLES 2b

L. Find the remainder when 4x%+ 2x* + 112% + x — 6 is divided by x4 3.

2, Prove that (x -2} is a factor of 2x*- 5x%+ 5x~ 6 and find the other
factor.

3. Prove that (x® - 4) is a factor of x* - 3x? — 6x2+ 12x + 8 and completely
factorise the expression.

4, If (2x - 1) is a factor of 4x% - ax®+ 5x - 2, find the value of a.

5. Show that {& — &) is a factor of 4® — &% and write down the other factor,
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6. The remainder when x* - ax3+ 2 is divided by x+1 is 4. Find the
value of a.

7. Find the HC.F. of *-2x2+x-2 and x*-x-2.
8. Factorise: (i) 2X°-5x2-x+6; (i) a¥b- )+ c- )+ Ha-b).

9, Jf x3—x-56 is a factor of x*+ax®-9x2+ bx -6, find the valves of
a and b and complete the factorisation.

10. Find the H.C.F.s of:
() 22+ xp—)2 and 2P-Txy+5x° -7
(i) 22*-5x%-4x+3 and x*-4xt+4x-3.
11. Prove that (y— 2 + (z — P+ (x - yP =3y - 2z - x}Yx - ).
12. For what valaes of ¢ is {x - ¢) a factor of
3+ (c+ I -Eet+e-Tix—47
13, By first determining a factor by trial, factorise the following
eXpressions:
() 28+ 11+ 10 - 8; () o -4x+3;  (iiD) 2a® + 5a2h 4 Iabt + 255,

14. Show that (x+ 1) is a repeated factor of x*+ x3+2x%+ Sx+ 3 and find
the other factor.

15, Find the H.C.F. of x'-x*-2x%+x+1 and x®-3x2+x+2.
16. Factorise: (1) be(b— )+ calc— a)+ abla—b);

(i) a(b? — D+ b(c® - a¥) + cla® - b%);
(iii} a(b—c)*+blc - al® + ola - bF.

17. When x*+ax®+bx+c is divided by (x+1), (x+3), (x~2) the
remainders are 5, — 31, 44 respectively. Find the values of a, band .

18. If (x - a)? is a factor of x* + px +g, prove that 4p% +27¢2 = 0.

19, By writing x? = X, show that, when » is odd, x?-1 is a factor of
x"?-1. Hence factorise x*- L.

20. Factorise: (i) (x2— yz)(y + 2} + (% — 2%}z + X} + (2B - xpHx +»);
(i) a(b - ¢ + blc - a* + c{a = by + Yabc;
(i) (b - F +(c- @° +{a- D).

21, Find the HCF. of x* +2x2+2x—1 and 2%+ x*+x®+x-1.

22, If a polynomial f(x) is divided by (x - a)x~ 5), show that the remainder
can be expressed in the form ;x~1-_b [fAaXx ~ b} - fibYx — a}].

23, Given that x*+2x-1 is a factor of x®+af+axi+5x3+bx~dx+2,
find the values of a and b and completely factorise the expression.

24, Faclorise: (@ (bc+ca+ab)"—baca-c3a3—a*b’;
(D) (@+b+cP—-(b+c-a-(cta-Bf-{ath-cf.

25, Factorise 4x* + 92— 11x + 3, given that there is a repeated linear factor.
26. Find the factors of {5+ 313¥x — ¥+ A+ By — 2+ (P + x¥z - x).
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Ratio and proportion. Equal fractions
Definition. The pairs of numbers q,b,, @b, asby, . . . anby, are

o S T =%

said to be in proportion if | b by B " B

Basic result. .{f g—3= R !7’ then each of the fractions

1 2 ;]

. Ilai+ftﬂg+rsas+ PR +Ig“§| .
is equal to X0 A N Sr—— i Y where I, I, ... Iy are
constants such that hby +lbetlbs+ . . . +lpby#0.

This result is readily proved by putting each of the otiginal fractions
equal to k, and substitoting a,=kb,, a,=kb,, . . . an=kb, into the

numerator of the compound fraction, This substitution method is
useful in dealing with problems on equal fractions.

2x+y+z X-y+2z x+ly-z

Ex.17. If - i —5 ' prove that eack fraction is zero,
Each fraction = (Ex_**‘-;if). ;.(ae;;;&i_-(ﬂgx;ﬂ -0

Ex. 18, If -— spravel‘hatx+y+z=-=0.

-
b -¢ c—-a a—-b
Writing each fraction =k; x=k(b~ ), y =k(e - a), z =k(a- b).
Hence x+y+z=0.
Ex. 19, Solve the equations
;;:_x%' =x—;'+z’ ettty i dz-6=0,
X_XEy_X-y+z
1 3 2
Then x=k;, x+y=3k, y=2k; x-y+z=2k z=3k
Substituting into the quadratic equation,
k2+4k?+ 9k2 1+ k+4k+ 12k-6=0,
1453+ 17k-6=0,
(Tk-D2k+3)=0; k=§-, -i-

Let =k,

S xﬂ‘%? y:%, z=%; }
or x=-by=-32z=-2
EXAMPLES 2¢
a-¢_ a+ece
1. If‘”&’pmvcthatb ' b+d
2. Given that 5‘2“ 7 Prove thatc=wa§5_~_:j§.

P_r oot p‘+r"
3 lfq—s simplify P
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4 1727 8 b o thatp g r=o.
7 q r

§. Solve the equations --Ty ET‘?—E:E;—T—Z v 2x+y+zrmd,
x_ry_z xyz

b. lf2 3% evaluatex$+y3+zs

. X _y_z_ax+bytez+2
7. Solve the equations a b o iR rl+d

s 12 =y2- and y -+ z+# 0, express z in terms of x, y.
x+z 2

9, Show that, i u;_ﬁ!g. = y_;_x s then Sx - Sy+4z=0.

x_ ¥ (_x_ﬂ_-!__+z) X+y+z
10. Ify-zsprovcthatx,+yg+z= Py

11. Solve the equations: {i -2 = y-1 =

+1
. 5 _3 ; dx-y-zr=1;
(“)x y - X xT'iJ;LZ; 3024 22t =1.
¥ry-z Woydr XA YR opgee BESAED
) 4 3 yz+zx+x)

@ +cttet | face

12, Given that -

13. lf d f’ prove that Fraicfi = baf

4. If = log x Iogg ]og z =log &, prove that xp/z8 =u&+e=%,

15. Solve the equations ?-—-%:?; ax+by+cz—a + B+ 2,

6. FXTETX _FEXY XPoE o vethat X = Y = F
q-r r-p P—q 4-r r-p p-4q

Quadratic and rational quadratic functions,

Ex, 20. Discuss the signs of the functions
B 43-Tx-2; (i) -13+10x-2x*
Jor real values of x.
i) This function factorises,
4x—Tx~2=(dx+1)x-2).

When x < — 1, both factors are negative and the function is positive.

When - 3 < x< 2, the factors are of opposite signs and the function is
negative.

When x> 2, both factors are positive and the fuaction is positive.
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(i) This function does not factorise.
Write — 134 I0x ~ 2x% = - 2[x® - 5x + 1}] :
== 2§(x - $P- 28+ LA - - 2x- $P+ )
As the term within the bracket is positive for all real values of x, the func tion

is always negative. It will be noted that the maximum valug of the function
occurs when x =% and is equal to — -

General case,
l b c|
2 L= 24 z
axt+-bx-te=a x+ax+a

(s 2)'= B (o L) ]

2
As the least value of (x+?f’a) is zero, the terin within the bracket

will be of a constant sign if 4ac—$*=20, ie. if P*<L4ac. When this
condition is satisfied the function takes the sign of a.

.. The necessary and sufficient conditions for ax®+bx+c to be
positive for all real values of x are: (i) B* < 4ac, (i} a>-10.

Functions of more than one variable, The methods of dealing with
quadratic functions of more than one variable are illustrated in the
following examples.

Ex. 21, Prove that the function 2x%— 8xy + 9y + 4x — 10y + 4 s positive for
all real values of x and y and determine its minimum value.

First obtain a perfect square which inciudes all the terms containing one
variable, say x.

Function =2{[x% - 4xy + 2x]+ 2)* - 5y + 2}
=A[(x-2p+1P=- 452 14y~ 1]+ 22 - 5p 4+ 2)
=2{(x-2y+ 1P +3D%-2y+2)}
=2{(x - 2y + 122+ {[{y - 1)+ 1]}, completing the square

for the y terms,
=2(x -+ 1P+ 1y - 12+ 1.

Henice the function is positive for all real values of x and y. It has a
minimum value of 1 when x -2y +1~=y-1=0, i.e. when x =y =1.

Ex.22. If x and y are real and x2-2xy— 2%+ 6x—y+ 11 =0, find the
possible ranges of values of x and y.
To determine the possible values of y, treat the equation as a quadratic in x.

xt-2x(y - 3) -2 - p+ 110,

As x s real, B =4ac,
oMy -3 zA-22 -y 10,
W -5y-220,

Qr+1)y-2)=0.
.y can take all real values apart from those between -5 and 2.
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Now treat the equation as a quadratic in y.
=22 y2x+ D2+ 6+ 1L =0,
As y is real, Qe+ 1R =40 - 2)(2 +6x+ 11),
12x%+ 52x + 892 0.
But as 4zc>b® and a0, this function is positive for all values of x.
Hence x can take all real values.

Ex. 23. Discuss the sign of the function 4yz +2xy —3x— y2 - 72,
Proceeding as in Ex. 21 and noting that it will be simpler to deal with the
» terras first,
function = — {[)® - 2xy — 4yz] + 3x3+ 72%
— —{(y - x—22P+ 2x3 - dzx + 37%)
= - {(y— x- 220+ 2[(x - 2)* + 32}
So the function is negative for all real values of x, ¥, z.

Rational quadratic functions. A rational quadratic function is of the
axitbx+e
agxa + bzx + Cs.
discussed by equating it to y and then treating the result as a quadratic
equation in x.

form The possible values of such a function can be

Ex. 24. Find the possible range of values of ;%—i—: if x is real.,
2+2x+3
Let L P
& By -D+x(3y-2)+2y-3=0.

As x is real, Gy-Dz4y-12y-3),
ie. ¥ +8y-8z0.

Hence (v+4)z24

ly+422v6.
So — 4262y — 4+ 2V,

i.e. the given function can take all values with the exception of those between
~4-2/6 and -4+ 2476,

Ex. 25. Find the maximum and mininim values of x% and sketch the

graph of the function. "
_(x-1
Let Y mrxsd
SoxHy-Daay+D+y-1=0.
As x is real, +Dz4( - 1y -1),
0=3t-12yp

i.e. 02 3p(y - 4).

.. ymustbe 20 or 4.

Hence the maximum and minimum values of the function are 4, 0
respectively.
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Substituting these values for y, we find x=-1, I respectively and
consequently the turning-points on the graph are

maximum (- 1, 4y,  minimum (i, 0).
Further information to assist in sketching the graph:

{i} The graph only exists for 0y < 4.
(i) From (i), or because x*+ x+ 150 for real values of x, there are no
asymptotes parallel to Oy.
{iii) For numerically large values of x, the function which can be written
I- §+ _}12
as i clearly tends to a value 1. So y =1 is an asymptote.
T+-4,
X X
Substituting y=1, gives x=0 as the oniy finite solution; hence
the graph cuts its asymptote only at the point (0, 1).
(iv) When y=0, (x-1)®== 0. Hence the graph touches the x-axis at

(1, 0 and meeis it at no other point.
This is sofficient information to obtain the sketch graph in Fig. 41.

] 1 I __4-—"""'."-
=3 <% 4 0 1 2 3 X
FiG, 41,
X%+ 2nx
EX. 26. Find the range of values of » for whick the funcrmn 5 5 2
take alf values for real values of x.
X+ Zhx
Let TR i
Ay~ 1) - 2x(y + )+ 2y = 0,
As x is real, Ay + 1R =4y~ 1y

P -2} 3ap £330,

This inequality is satisfied when the quadratic function y%(1 - 2) + 3ay+ a2
is positive,
The required conditions are: (i} 1-3>0,
@iy 91 -2z ()

Condition (i) reduces t0 -4+ 5)2 0,
from which ag -4
Condition (i) is satisfied when Al

Both conditions are satisfied, and the original function can take all vaiues,
when A - §-



EXAMPLES 41

EXAMPLES 2d

1. Show that the function 6x - 10-- A% is negative for real values of x.

2. For what ranges of values of x are the following functions negative:
Gy 2%+ 5x-12; (i) 20+ 11x- 3232

3, Prove that the function 4x% - 12xy + 10p% is positive if x and y are real.

4. Find the value of i, other than zero, for which
_ (x = 29P + Mx - Yox—2y)
is a perfect square.

8, Find the maximum value of the function 6+ 3x-2* and sketch its
graph.

6. Obtain the minimum value of x’ +2xy+ 298+ 2x ~ 6y + 5.

. . x-1 . .
7. If x is real, show that the function -2 is capable of taking
all values. Sketch its graph.

8. Prove that the function —— xg  can only take values between — 4 and 3
and illustrate with a rough graph.
9. Determine the sign of the function 2x3 - 2xy + 207 + 2x ~- 4y + 7 for real
values of the variables.
10. If x, y are real, and x2 +dxp + 2% - 8x - 12y £+ 15 =0, find the ranges
of possible values of: (D) x; (i) ».
»-x+1

11, Find the maximom and minimum values of the function
x4l

and sketch the graph of the function.
12. Prove that the roots of the equation X3+ 2(n+ Dx + 84 = 0 are real for
all values of 2.
13. Show that the function 6xy + 6x + 6y — 313 - 6y* — 16 is negative. For
what values of x and y is it a maximum?
a3 -T1

14. Prove that the function e has 2 maximum value of 5 and a

minimunt value of 9. Explain the apparent paradox by drawing a rough

graph.
15. Find the possible range of values of the function i%:—z—"-: for real

values of x.
. . . x-k .
16. Find the range of values of X for which the function oo

capable of taking all values between — o0 and +c0.

17. Prove that the function x4+ 7442022 +8yz—22x+4xy is never
negative for real values of x, y, z.

18, Show that, if » and » are real, then xa(x Zx) % has a minimum value

of zero and a maximum value of G2 + 22 + 5).
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19. If x, y are real, prove that 2x%+4xp + 32 - 8x - 10y + 102 1.
( )‘

20. Prove that, as x varies from — co to + o0, the function assumes

twice over all values except those in a particular interval. Fmd thls intetval
and draw the graph of the function.

2. 1T P = 2—5— -+ show that ¥ can only take vatues between -1, assuming

x is real. Show also that if »*= xg—z'fi y can take all values. lilustrate

graphically.
22. For what values of 2 is the function x2+2)%+2xy-2x~6y+rz1
for real values of x and y?
Lxtaf
xXErx+1
24. Prove that the function x%+ 2xy + y*a®+ 13~ 2ax - 6ay + 2% is always
positive if o= 2.

23. If x and a are real, prove that 0< sHat-a+1)

xX4+A

25. Prove that, for all real values of x and 3, the function ——— lies
x*rbxte

between fixed limits if 52 < 4¢.

Partial fractions. Special methods. The basic methods of express-
ing an algebraic fraction as a sum of partial fractions have been dealt
with in the previous volume. Two useful methods of simplification will
be illustrated here.

Case 1. Linear factor in denominator. Consider the algebraic

fractlonfg ;, where the degree of f(x) is less than that of g(x), and

suppose g(x) has a non-repeated factor (x—a).
We can write g(x)Eq(x) (x—a)
fx} (%)

and §(‘5r§‘ﬁ+q(x)

where p(x) is a polynomial of degree one less than g(x) and 4 is a
constant.

S fi) = Ag(x) + (x - a)p(x).

Putting x =g, fla)= Aq(a); = j—%
Hence the partial fraction corresponding to the factor (x—a) in the

_ S
qla)(x —a)

denomtinator is
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This useful result can be expressed as follows:

The partial fraction corresponding to a factor (x— a) in the denominator
is A)(x—aq), where A is the result of putting x=a in every part of the
original fraction except (x—a) itself.

Ex. 7. Express in partial fractions: (i} x( le)( — , (&) @";)7&‘5}
G 2x-4 (=4 + (-2) 1 2 1
x(x— 1}(x— 3} ( IX - 3)x (l)( 2)x 1 (3)(2)x 3
4,1, 1,
TT3x Tx-10 3x-3)
i) x-c _a-c¢ 1 b-c¢ 1
! (x-afx-b) a-bx b-ax-b
Ex. 28. Express 1 in partial fractions.

Xx+1 ... (x+n}
The partial fraction corresponding to the factor x

The partial fraction corresponding to the factor x+1

L ! SN T —
Tx+1 (-D1.2...2-1  x+1 (-DI!

The partial fraction corresponding to the factor x +2

i 1 1 1
Sx 2 (mI-DL.2...n-2 x+2@-HRY

Similarly, the partial fraction corresponding to the factor x+r
=0 1

x+r (a-nirt

Hence,
S NS N NS S SR SR N
Mx+D. . x+m oxon! x+1 (m-DIH x+2 (n~2)’2'
- 1 -nr i
T x4r =kt 7 x+n n

Case 1I. Repeated linear factor in denominator. An elementary
treatment of this case has already been given, but it is laborious when
the linear factor is repeated more than two or three times. A simpler
method is illustrated in the following examples.
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2x+1 . xB4x+l

Ex. 29, Express in partial fractions: (i) e s () iy T )

(1) Divide 1+2x by 1+x, giving the

1+x-xt+x5- 4t

quotient as a set of terms in ascending powers 1 +x)1+2x
of x up to the term in x4 14x
2x+1 x4 x
T‘hcnﬁ—lﬂr Bty —— PN JU
- x*
2x+1 t1 1 1 1
Henoe gy B @ 278 3 50 ‘*";:
(ii) Writing x - 1 = y, the fraction becomes o4 ot
Y+3p+3 iy
y‘(}"r3) _xﬁ__xb

By dividing 3 + 3y -+ 3 by 3+ y in ascending

Remainder —» x*

powers of y and taking the quotient as far as

the term in 3, it follows that

JMsjﬂr-}—lJr%'y+ by - a’vygﬁ}w

y+3 »+3
Dividing by »* and replacing y by x - 1,
rrx+1 1 2 1 1 i
G-D'E+) G-I 3—1P 8- FG—1) T2

EXAMPLES 2e (Miscellaneous partial fractions)

Express the following functions in partial fractions:

x?
G+ Dx+2x+3)
X
G+ IPEEFDY
R

2x
»r
xpx-1
g
x3
T d
12
x(x-2P

B aaray

1

i

7.

9.

11.

13

Ix-2
x(x~ D2x - 1)
4. % .
e+ Dx+ 2Hx + Ix + 4)
6 x+2 .
Mx+1)
s
s. tx'___]_}i'
19 Bx(x-2Ux-4)
T -Dx - Ix=-5Hx-D
x-1
Srxdixrl
xP
- DGR
x-2
ARELT)

1z

14.

16.
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17, Express x(z: ::;%3! as the sum of two partial fractions of the forms

A_f_t_.'B_. and g:tﬂ‘
A+ 1) xt+1

18. Prove that, if n is a positive intcger,

1 - 1 . i 1
" Q-x}x-1" 2-x 4(x-1F
19. Express b as the sum of four partial fractions.

20, If f{x)is of lower degree than F(x) and F(x) = (x - a{x—a,) . . . (x - a»),

) _fa) | flag 1 fla) 1
prove that Fo~ Flay x-a,+ F(ay) x—a,+ . +F'(a,,] - an

Miscellaneous equations

1. Irrational equations of the form /(ax+by++/(cx+d)=+/(px+g).
The solution of this type of equation usually involves a repeated
squaring process, and care must be taken to ensure that the resulting
roots are checked in the original equation as additional roots are
introduced by squaring.

Ex. 3. Solve the equation +/(2x+3) —+/(x+ 1) =+/(x-2).
Squaring both sides, 2x+3 + x+ 1 - 24/{(2x + Mz + 1)} =x -~ 2.
Esolating the trrational term, 2x+ 6 =2/{(2c + I{x + 1}
Dividing by 2 and squaring, x®+ 6x+9 =(2x+ 3Nx+1)
Lo 0=x"-x-6
x=3, -2,
On substitution, x =3 is seen to be a root of the original equation.
Substituting x = - 2 leads to square-roots of negative numbers, and hence
x = -2 is not a solution.

Ex, 31. Solve the equation +/{3(x — 2x - I} —v{(x - 2Ax - N} =x -2,
The factor +/(x ~ 2) can be removed after noting the solution x =2.
Then VEHx - -/(x-5) =+ (x-2. . . . . . @
Proceeding as before,
Hx-V+(x~D-2/Px-INx-H=x-2,
3x - 12 =2¢/{3(x - Nx -5
(Gx— 122 = 4(3x%— 24x + 45)
3x2 - 24x 1+ 36=0
x=26
On substitution it is found that x =2 is not a solution of equation (i), but

it has already been seen to be a solution of the original equation. The valoe
x =6 is also a solution.

. Solutions are x =2, 6.
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II. Reciprocal eguations. There are two classes of reciprocal
equations, in which
(i) the coefficients of terms equidistant from the ends are equal,
e.g. =234 37— 2x+1=0;

(i) the coefficients of terms equidistant from the ends are equal in
magnitude but opposite in sign,

e.g. X543t~ 23+ 2x%—3x—1=0.

Method of solution. If the degree of the equation is odd, x=—11is
a root in case (iY and x=1 is a root in case (ii). The corresponding
factors should be divided out and in the resulting equation of even
degree, say 2m, divide throughout by x™ and group the terms in pairs
xm ixlm’ xm-1 ile—'l’ etc. Then let xii=X and solve for X.

The method for equations of even degree is included in that above.

Even degree equations which are partly class (i) and partly class (i)
can sometimes be solved in a similar manner (see Ex. 33).

Ex. 32, Solve the equation x®— x4 —8x° -8x—-x+1=0.

This is a reciprocal equation of type (i) and of odd degree.
By substitution it is seen that one root s x=-1. -
Dividing out the factor x + 1, the equation becomes

xt=2F0 -6 -2+ i=10,
Dividing by x? and rearranging,

(f+£ﬁ) —2(x+3—1r)—630-

Let x+i=X, then x=+l+2=x= or x’+xls=xi—2.

x&
s XE-_2XY-8=0
X =4, -2
1 1
S X+ - =4 xX+-==-2;
X X
AE-dx+1=0 X2+2x+1=0
x=214+/3, x=-1, ~1.

The roots of the equation are -1, -1, -1, 23 4/3.
Ex, 33. Solve the equation 2x% - x* - Tx3+ x+ 2 =0.

This is not strictly a reciprocal equation, but it can be solved by a similar
method.
Dividing by x? and rearranging,

2(x’+;_=)—(x—}‘)—?=0.
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1

»
SO AXE Y- X-T=0
2X2-X-3=0

X=% -1

Let x-—i=X; then x*+ S =X%+2.

Replacing X by x--l;c and solving the resulting quadratic equations, we
have
x=2, — b H-1L+5).

HI. Miscellaneous polynomial egquations. It will be sufficient here
to consider only those equations where one or more roots can readily
be obtained by trial or where there is a given relationship between
some of the roots,

Ex. 34. Solve the equation x* - 62+ 5x+6=0.

If there is a simple root it will be a factor of &.

By trial, x =2 is a root.

But =6+ Sx+ 6=(x - 2at - 4x - 3),

As the roots of a®~4x-3 =0 are x=2 1 +/7, the solutions of the given
equation are x =2, 2 +4/7.

Ex. 35. Solve the equation 2x*+8x%-9x3-19x-6=0, given that the
product of twe of its roois is 2.

As the product of two roots is 2, the quadratic factor which yields these
two roots when equated to zero must be of the form x? + ax + 2.

Let 28+ Bx® — 9% 19x — 6 =(x+ ax + 2)(2nd quadratic factor).
Clearly in the second quadratic factor, two terms are 2x¥and - 3.
. Expression =(x®+ ax + H(2x2 + bx - 3).

Equating coefficicnts of x*, 8=2a+&.
Equating coefficients of x, - 19=-3a+2b,

Loa=5b=-2
The equation is (34 Sx+ 222 - 2x - 3) =0,
hence x=3-5£/1D, 30 £ v
EXAMPLES 2f
Solve the following equations:
1, vVx+4/(x—3)=+(x+35). 2. 4/ (x-1=x-4.
33+ -9x-9=0. 4, 22 -2 -1lx+6=0,
5, 3/(2x+ 1) - 4/ (x— 3 =+ (6x+ 1), 6 XN-x0-4x2-x+1=0,
7.8 +33-2a0 - Jx+1=0. 8 V2-0+4/(-1-x)=13.

9, VIx(x -} - v{x(x -8} =x. 10, 28+ xA-T3- T+ x+2=0.
10 (- 1)7-8x3=0. 12, (x+ 24 - 160 - 1p=0.
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13. Solve the equation x¥+x*— 16x¥ — 4x + 48 = 0, given that the product
of two roots is 6.
14. Solve the equation 2¥+3x+3=+/(2x*+6x+5), by using the
substitution y=x2+3x+ 3.
15. Solve the equation 2x% ~ 3x% - 15x% + 10x + 24 = 0, given that the sum
of two roots is unity.
16. Solve: (i) (x~2eMx-2D)=(g+b-cXa-b+0);
(i) x4+ 37 =26, ¥}y 4+ x)2 = - 6.
17. Solve: (i) v/(2x - 5)++/(6x-P=x-1;
) Vi -x+xa0)+v1+x+20=3,
18. Find real solutions of the equation x*+ (x - 1§ =1.
19. Solve the eguation x'-2x-16x*-8x+16=0, by using the
substitution x =2¢.
20, Find the values of @ and b if x%2 - x- 2 is a factor of
fX)=x84+4x5 - ax® - 1322 - bx— 12
and solve the equation f{x)=
21. Solve the simultaneous equations, yz=2y+2}+6, zx =2z 4+ x}+2,
xy=2x+y}+11.

MISCELLANEOUS EXAMPLES

1. Simplify (a+b—cP+(b+c-a+@+ec-H2
2, Factorise: (i) {a—1¥-B+{a+ 1%+ 6(a*- 1);
(i) x%-y®- 222+ zx + 3yz.
(x+y+z)2
PO e Pl
4, Provc that the expression 2x?— 6xy + 5y%+ 2x - 8y + 14 is positive for
all real values of x and y.

5. Find for real valves of x: (i} the siga of the function 2x?-13x+15;

o . . dxi-2x+1
(i) the possible values of the function I Nk

3. Il' = —s simplify -

f:' prove that x = fly).

2x-5 .
2)(3x 1¥X2x+5)

6 If y = f(x), where f(x) = 2

7. Express in partial fractions: (i) e

@ =7 1)4(x2+ Iy
8, Factorise: () x(y ~ 2P+ ¥z - ¥+ z{x~ P
(ii) Xy - z)“ + ¥4z - X+ 22(x - ).

9, Express x*+— ,x“-l- 'x'+x4veeci1mtcnnsof.\’ where X—x+1
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10. Solve the equations: (i) 9x* - 24x% - 2x%- 24x+9=0;
(i) 5% -Tx¥ =17, Sxy-6Gx¥=6.
11. (i) Find the sign of the expression 2x -5 ~4x? for real values of x.
3 2%+ x+2 5
el oo
(i} If x is real, prove that < Zx" AL

12. Prove that the roots of the equation (4* - dec)x® + Ha+ c)x — 4 =0 are
real if a, b, ¢ are real and find the condition that they are equal,

13. Solve the equation x° — 4x* + 7x® - 2 = 0, given that the product of two
10013 is 2.

. . . N 1
14. Expl’css with rational denominators: (l) m, (ll} im—s,
(iii) ia v,x 1/?’ where x, y are positive integers.

15, If x, y are real, prove that x3— 4xy £ 52+ 2x - 8y+520. For what
values of x, ¥ is the function a minimum?

16, (i} Factorise 4a*+ 3a?b* + bt
(i) If x%— d48x + 28 = (x® + ax -+ 2Xx® + dx + b), find the values of aand b.
X8 . .
12 as a sum of four partial fractions and find the
coefficient of x™ in the expansion of the function in a series of ascending
powers of x.
18. If f{1) = 3%+ Tn, prove that f{n+ 1) - f(x) is a multiple of §.
19. Solve; (i) X¥*-x2-5x+2=0;
(i) v{dx—2D++/(x+ 1)- (T~ 3x)=0.
20, A rational integral function of x, ¢{x), is divided by x*-a*. Prove
Ha)-d(~a)  Ha)+(-a)
N T

21. Find the range of values of & for which the expression
XE—dx 42+ Mx - 4)°
is positive for all real values of x.

17. Express

that the remainder is

22.1!'— P SR and ¢+ b+0, express x in terms of y and z.
a+h -a b+l

23, If x>0, prove that: {i) x+£32; (i) xr + 23077 = 2xm,

1 . .
24. Resolve ——— into pactial fractions.
P ITr |

25, Find the values of X for which the function x®+8xy - 5% — M + %)
can be expressed as a perfect square.  If x¥+ 3% =1, prove that

- 7€ X3 H8xy - 573
26, Solve the equations:
@ +ix-6)+ v(x- 1)=+(Qx- 35
i) v (6- 2+ (1~ x)=+(5-3x.
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27. Factorise (b + e2Xb— P+ {2 + a®¥c - a)® + {2 + P)(a—- b
28. Prove that, if x is a real variable and &, 5, ¢ are real constants, the

function - o xb T lies between two fixed values if a®+ e®>ab and P <dcd

X .y _.:z .,
2. If P T, Al T prove that each fraction is equal to

1
x+ytz

30. Find the least positive values of:
Q) x+ 1;2; (i) X%+ 2ax+ 2P+ ab+ b,

31 If x, y are real and 16x*+8xy + 9% — 64y =0, prove that 0 p<38,
-4 £xgd

32. Factorise:
(i) B+ + A+ ala-bXe—-a)+ b - )a - B+ cle - alh - o)+ Sabe;
(i) 4(x — Dx - 3){x— 6Hx-9)-5x2 [Hint: let (x- 3Nz -6)=p.]
2x+2)

33. Solve the equation Tz + e =3.

34, Use the result, cos 30=4¢0s30-3cos 0, to solve completely the
eguation 8x* - 6x =1.

35, Given that y =f(x) = (ax + F)}/(x + ¢), where a, b, ¢ are constants, what
is the condition that x =f{»)? If this condition is satisfied, find the values
Xy, Xy, Of x for which f(x}=x. Show further that, if x; +x;=2x,, then for
any value of x, 4(x - xu)(y —xp) =g — 2%

-4x+ 8
J\:2 1

36, Given that y*= s determine the limitations on the values of

pif x is real.

37. If ax®+ bx+ ¢, where a, ¢ do not equal zero, has a factor of the form
22+ px+1, prove that @®— c*=ab. In this case, prove that the functions
ax3+bx + c and ex? + bx? + a have a common quadratic factor.

38, If g, b, ¢ are real and g lies between the limits ~ (b+¢) and (b~ o),
bx+e.
bx+a

39, (i} Prove that the expression x%+2xy+4y*+2x—10y+15 has a
minimum value of 2,

(i) Find the values of A for which the function
Bxt4bxy -5 +dx+ 2y -4=0
can be expressed as the product of two lincar factors.

prove that the function g—_ is capable of all real values.
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40, Show that if a polynomial f(x) leaves a remainder of the form px+¢
when divided by {x - a}(x — b}(x - ), where 4, b, ¢ are distinct, then

- i@+ (c-af(B) +a- bfl)=0.

41. Byrepresenting the equations y — 2x =0,x+y =3, 2y — x =5 graphically,
or otherwise, prove that if y - 2x>>0, x+y>3 and 2y - x<<5, then < x<3,
2y bl

42. Find all functiens f(x) of the form f(x) =
and O+ 3f(-2)=0.

43. Find a polynomial fi(x) of degree five, such that f(x) - 1 is divisible by
{x — 1) and f(x) itself is divisible by x*.

#. Find the H.C.F. of x® ~x* 4+ 4x® = 2x%+ 2x+ 1 and x*+ 352+ X%+ 4.

ay+t oyz+1 zx+1
z x

a+bx .
31, for which £(2) = 2/(5)

45. If x, y, z are not all equal and =k, prove that

¥t =1 and A2=1.



CHAPTER ITi

DETERMINANTS. LINEAR EQUATIONS

Notation and definitions. The expression a,b,—a.b, derived from

the four terms, or elements, @, b;; a, b, is denoted by the symbol [, bll.
ay by

This symbol |a, &,| is called a determinant. Having two rows a, b,,

s by

ay b, and two columns a, &, b, b, it is a determinant of the second order,

Extending this definition, the expression
ay(bscs— bacz) - b1(azcs - ascz) + ¢y(asha— ashy)

derived from the nine ¢lements @, b, ¢;; @y by ¢p; a3 by 4 is denoted by
the symbol {@, b, ;. This is a determinant of the third order, having
s b’ Oy
@5 by s
three rows and three columns.

From the definition, it follows that

a, by ey]=ayb, ;|- byja; e +ey1a, bs|,
iy bg Cy bg Cy ay C; s bs
az by oy

the elements of the top row being taken in order from left to right with
alternate plus and minus signs and multiplied by the second-order
determinants which remain when the row and column through the
element ate deleted.

The determinants

a td

by o], |85 €4y |as bgl are called the minors of
by &5l |a; o5l lay by -
a,, by, ¢, respectively and will be denoted by 4, 8, C,.

Clearly the definition can be extended to determinants of any order.
A determinant of order r will consist of #® elements arranged in n rows
and » columns, and will be expressible in terms of » determinants of
order n—1.

For convenience, the symbol A is often used to denote a determinant.

Ex. 1. Evaluate (i) |3 4|; |12 0-1
12 4 -3 2
0 2 3

NA=QxD-dxD=2.
41} ﬁ-2|—3 2 ~0|4 2 +(—l)|4 -3
23 03 o 2

=2(-9-4)-0-(8-0)=- 34,
52
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Ex. 2. Prove that {a h g|=abe-+ 2fh - aft - bg® - ol

hbf

gfc

A = albe — %) - hhe - fx)+ &(fh- bg),
= abc+ 2fgh—af® - bg®- ok’

53

Ex. 3, Expard the determinant |x 1 1 1],
1200
10x0
100 x
A=x(x00]-1l100{+1|1 x0Ol-1| x0
0x0 I x0 100 10 x
00 x| 10x 10x 100
=x0A - [ +[1.0-x.x]-[1.0—x(~x)]
=yt — 3a3,
EXAMPLES 3a
Evaluaie the following determinants:
1. |3 2] 2. |2 3‘. 3.‘ 7 - l
14 0 - -2 &
4] 02 5 (111} 6. |20 1]
-30 222 03 -1
333 42 0
7. 0 013 81200l 9.1 1 1 1 1
1 11 020 1 -1 1 ~1
-2 -14 002 -1 1 -1 1
-1 -1 1 1
10. 120 00] 11, 1 ¢ 0 1] 12 ! -1 1 -1}
61 -10 -1 2 0 1 -1 1 -1 i
42 02 0-3 1 1 2 0-2 3
40 31 0 90 -1 -2 0 -3 2 1
Expand the following determinants:
13. a—b|. l4.|x " | 18. la+b b|l. 16, |x-2y¥ x-i-zy‘.
b - 2x -3y a-ba x4y x-y
17. {0 b a|. 18. 1 -y z. 19 )ete 1) 20. 1 1 |
ab x 1 —z a a1 a b c
b0a -x y 1 1 a at l+a l+b L+
2.1 111} 2% ta 0 6 0. 23, (11111
1x11 0alb abaga
1121 bOal aabha
111x 0hoa aaak
24, Verify that |[I+x 1+py 14+z|={1 1 1|-F|x ¥ 2z|.
1 2 3 123 123
3 2 i 321 321
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25, Verify that [a 2 1|{=a|l 21
al? 132
aléd i14
26. Prove that ja ~b 2e|=0.
a —b 2
x y =z
27. Provethat |a » 0 ¢|=0.
E c¢0 —~a
c -a® b
1 190 1
28, Verify that |a+x b e|=|a b cl+x|1 b ¢].
b+x ca beca lca
c+xab cakb lab

Laws of determinants, The following Jaws which will be proved true
for third order determinants are in fact true for determinants of any
order.

Law 1. If any two parallel sets of elements, rows or columns, are
interchanged, the sign of A is changed.

For take
A=l b, o|=afbyea—bye,)—biapey— @scy) +cylashs — azhy).
a b ey
ay by e

Interchanging the first two rows,

ay by ¢
a b o
ay by ¢

= aylb,cy —byey) —blaic; —ayey) +cxfa by —azhy)

= — ay(byCy — bacg) + Di{@ycs — aaes) — cxfanhy — azhy)

A similar result will be obtained if two columns are interchanged,

Law I. If any two parallel sets of elements are identical, then A=0.

This important result follows immediately from Law 1, for if the
identical sets are interchanged, the sign of A must also be changed.
As however the new determinant is identical with A, it follows that
A=0.

E.p. b+e a a)l=0
cta b b

atbcc
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Law HI. The value of A is unchanged if all the rows are written as
columns in the same order, or vice versa.

Take A as in Law 1. Writing the rows as columns,

A'=la, ay ay|=ay(bees—bsce) —ag(Brcy— byc)) + ay{b1e; — byey)
by b; b,

€1 Cp Cy

= gl(bzc 32— DaCa) — By(@eCy — @aca) + Cxf @by — ashy)

Law IV. If every elememt of one row or column is multiplied, or
divided, by the same factor k, then A is muitiplied, or divided, by that
Jactor k.

Taking A as before, consider the first column multiplied by k.
Then

ka, b, ¢,
kﬂg bz Cy
ka, by ¢,

=kty(bycy = bycy) — Bylkases — Kagee) + eqlkahy — k ayby)

klafbycs— byey) — bylase, —ayes) + cx(aehy— asbo)}

Alternatively, this law can be stated in the form,

if each element of a row or column of A has a common factor K,
then k is a factor of A.

Eg. x 2 xd=x1 x® 25[=x1 x *{=xY1 x %
xtx x? x x x? x I x x 1x
x3 x x x? x¥ x x2xx xx1

Law V. If every element in a row or column can be resolved into the
sum, or difference, of two others, then A can be expressed as the sum, or
difference, of two determinants.

For let
A= |ay+a) B+b) oty |=(ay+a)bs co|— by tby)|az ¢z
ay by Ly by ¢y iy Cy
as by Cy +{ey+6y)|ag by
ay by
b, cgl-b, a, c,|+f:,|¢‘.'== b,| +a, ]b, c,l N Ia, c,|+c,' as b,|
by cg Gy Cy by o @ C3 a2 by
ie. A= |ay b |+ B o |
as by ¢y a by o
as by ¢cs1 las by o
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This result can be extended to the case where the elements of a row
or column are expressible as a sum or difference of three or more terms,

Eg A=|I-x+2®x 2%=|1 x x*|—|x x x3|+{x* x x*
I=y+p2 y | (Ly | vy B Py ¥
1—z42% z 22 1 z 2% |z z z%| |2% z 2%
=11 x x%*|, the last two determinants
1yy*
1z 2t

vanishing as they each have two identical columns.

Law VI. A is unchanged in value when to the elements of any row
(column) are added, or subtracted, any constant multiples of the elements
of one or more other rows (columns).

For taking A=|a, b, ¢;|. consider the determinant A’ obtained by
@ by ¢,
ay by ¢y
adding to the first row a constant multiple », of the second row and a
constant multiple 2, of the third row,

A’ =|ay+hgay+ 08y byHiohy+hghy €250+ 2509
(128 bg Ca
s 63 Cy
=A+dgia, by o+l a5 By €3l using Law V,
D’as by ¢, a; b, ¢
ay by oy ag by o

=A, as the other determinants are zero by Law II.

Eg. A=|l1a d{={1-1a~-b a-b*=(@—58)J01 a+b|
1 &5 ] b B 15 B3
1 ¢ct 1 ¢ 2 lec ¢
=@-mo 1 a+b [=(@-bb—-c)01 atb|.
0b—e b2—¢® 01 b+e
1 ¢ c? le ¢

Further simplification is achieved by subtracting elements of the
second row from those of the first and the ensuing determinant is
readily evaluated giving

A={a—b)b—c)c—a).
N.B. Care must be taken not 10 apply two or more of these operations
simultaneously to the same rows or columns.

E.g.jl a a'| |1—1 a—b g*—b*|, simultancously subtracting elements
1552 1~1b—ab—at
I et 1 ¢ c?

of the second row from those of the first, ang vice-versa.
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Ex. 4. Evaluate: (i) |219 305‘: Gi) |30 40 50{: Gy 11 2 3 4|
108 152 40 50 30 2345
50 40 30 3456
45617
(i) Multiply elements of the second row by 2 and subtract from the first

TOW.
Then A=| 31 |=456-108=348.
108 152

(i) Remove a factor 10 from each row {or column).

Then A =-1(?l 3 4 5|; now subtract elements of the last row from those

453
$§43

of the first and remove the resulting factor, 2.
A=2000-10 1|=2000{~3-9 = - 24,000.

453
543

{iii) Subtract elements of the second row from those of the first and the
elements of the third row from those of the second.

A=|-1 -1 -1 -1]|=0, by Law II,

-1 -1 -1 -1
3 4 5 6
4 5 6 7
Ex. & Prove that [b+e a-b a|=3abc-P-B -2
cta b~c b
a+b c-ac
A=|b+ec a a|+|b+¢ —b a|, using Law V,
c+a b b| |eta -c b
a+bec| |la+db —-a ¢
- 0 +|b -8 al+|e -5 al, using Law I,
¢ —¢cb| | -ch
a -ac|l |b-ac
=-|¢c baj,as|b -ba|=-|b b a|=0, by Law I,
ach c -cbh cech
bae a-dac¢ aac

=3abc—a* - b3

Ex. 6. Prove that |1+a b ¢ d |=1+a+b+c+d
a 1+& ¢ d
a b l+e d
a b ¢ 1+d

Add the elements of the second, third and fourth columns to those of the
first and remove the factor 1 +a+ b+ e+ d.
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A=(1+a+b+ec+d)|1 b ¢ 4d
111+4 ¢ d

1 & 1+¢ d

1 & ¢ 1+d

Now subtract elements of the second row from those of the first and
similarly for the third and second rows and the fourth and third rows.

Then A=(l+at+tb+e+d)|0 -1 0 O
o0 1 -1 0O
o0 0 1 -1
1 b cl+d
={l+a+b+ec+d)|0 -1 O|=(l+atb+e+d)|0 -1
0 1 -1 11+4d
1 et+
=1+g+b+c+d
EXAMPLES 3b
Evaluate the following determinants:
1. |l1r 20]. 2. |57 55|. 3. 1102 1025, 4, |2ﬂl 1321.
15 19 i3 4 76 78 100 67
5. 110 20 30|. 6. 40 5. 7,139 38 40|, 8. [13 3 23]
35 -1 32 6 19 26 28 30 753
060 4 -129 -11 24 32 34 39970
9.2 3 4 5 10. 2 4 6 B, ILIS42 -1
3456 0 3 6 9 652 1
4 5 6 1 9 & 3 0O 762 -1
510152 -8 -6 -4 -2 872 1

Expand the following determinants:
12.| at+h A+ | 13 |x-2y x+»]. 14 Ia’—b’ (a - b)®
2

.

(a+b) 2@ +855 ty x-~y a(a+5) ba - bH)
15. |a=—4b= g-gb-20. 16 [fa 1| 17 |2c 22 2.
-0 B-2ab+ bt al & 2y 2y
! a2 a 2z 22 A
18. | 1 1 1 19, |2-x 2 3. 20.|a0aqga]
a b & 2 5-x 6:‘ aala
l+a l+b 1+c¢ 3 4 10- aagaal
Daaa
A |lfdata 1) 22, | x+1 x-1x 1
dal & 2x+2x-22x22
al da Ix+3I x-3 3
1 data 4x+4 x-4 xP 4

23, Prove that |a®+ b8 a(a“—ab+b’)'=(a’+b’)(a‘+a’b’+b‘).
¥ -a Ha®+ab+b%
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24. Show that la+b+ec a+b-ca-b+c|= b el
b - a b -¢c a
c a -b c a-b
25, Solve the equation | x 2 3|=0.
-4 -2x2
2 x 1
26. Prove: (D e a @ a|=8abed, (i) 111 1}=(x-1)
b & b -5 I1x11
e ¢ —-e —-£ 11xt
d -d -d —d 111=x
27. Evaluate: i) 1b+¢ a a b {ii) a a+b a+2b|.
b c+a & a+b a+2b g+ 3b
c c atb a+2b a+3b at+db

x x+6 x+3| and solve the equation A = 0.
x+5 x =x42

x+3Ix+4 x

29, Provethat | » x+1 x+2 x+3|=0.
x+1 x+2 x+3 x+4
x+2 x+3 x+4 x+5
x+3 x+4 x+5 x+6

30. Express [ayx; + &y, alxg+blyz{ as a sum of four determinants and
apx; + boyy pXp+ byyy

nn
X2 Ya

28, Expand A=

x

prove that it is equal to la1 by
a; by

Factorisation of determinants. The two principal methods of
factorising a determinant are:

{i) by picking out common factors from any row or column;
(i)} by use of the remainder theorem.

These methods are illustrated in the following examples.

Ex. 7. Factorise: (i)| & B ;) lxy z|; Giyix+2 3 3
Byl gt yXxXx 3 x+4 3
ZzZYy 3 5 x+4

(i} Adding the elements of the second row to those of the brst,
A=|a+ b+ 3 B+ B2+ B =+ BB+ 1 1 l
P+ c+at lb’+c= &+a

=(a%+ B2+ Dt - BB =(a® + b2+ cB)a - b)a + b).

(i} Adding the elements of the second and third rows to those of the first .
and removing the factor (x+y+ ),

A=x+y+2l 1 1]=(x+p+2[1 0 0],
yxx y x—=p x—-y
zzy z 0 y-z
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subtracting the elements of the first column successively from those of the
second and the third columns.

LA =(x+y+2Xx - yy - 2).
(iii} Subtracting the elements of the second row from those of the third row,

A=|x+2 3 I |=(x-Dx+2 3 3
3 x+4 5 3 x+45
0 —(x-1) x-1 6 -11

= (x— Dilx+2Hx+4+ 5} -3(D+ 3 - 1))
= (x— DIx®+ 11x] =x(x - 1)(x+ 11).

Ex. 8. Factorise: (|1 1 1]: |1 1 1 1]
a b c a b e d
be ca ab at Bt gt

e o

(i} When b=¢, A vanishes as the Jast two columns are identical,
s (b- 1) is a factor.
Similarly, (c-a) and (a- &} are also factors.

But each term of A is of degree three in @, b, ¢, and therefore any remaining
factor must be a constant,

So let A=k(b- Mc-ala-b).
The value of &k can be obtained by giving numerical values to o, b, c,

avoiding those which make one of the factors (b - ¢), (¢ - &), (a - b) vanish.
Sotake a=0, b=1, c=2.

Then Ae|l 1 1|=4-2=2,
012
200
and k(b - c)c— a¥a- by =k{- D2X~ 1) =2%.
Sok=1
and A ={b- c)e-aXa-b).

(i) When g=»8, A vanishes as two columns are identical.
. {a-b) 15 a factor.

Similarly, (a—c), (a—d), (b—c), (¢ -} and (c - &) are factors.

As each term of A is of the sixth degree in a, b, ¢, d, the remaining factor
must be a constant, say k.

Giving a, b, ¢, d the values 0, 1, -1, 2,

A=11 11]=1 -12]=12,
01 -12 I 14
01 14 1 —-18
01 -18

and kia—b¥a~ cla-dKb - cXb - d)c-d)=12k.
oo k=1
and A=(a-bXa-cXa-dXb-oXb—-dNc- ).
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Minors and cofactors, The minor of any particular element in a
determinant has already been defined as the determinant obtained
when the row and column through the element are suppressed.

E.g. the minor Cy of coin @ by ;] is &y By
ag b; ¢ ay by
Gy B &

The value of any determinant can be expressed in terms of the
elements of any row or column and their respective minors.

For taking A=|a b ¢,
a, by &
Gy by ¢
by definition A=a,4,~bB +c.Ch.

Interchanging the first and second rows and using Law I,

A=— [ bg Cy "_{agt?g_bgﬁt‘i'f’c!}-
a, b
a3 bs Oy

Making a second interchange,

ﬂ== dg ba Cy :aajg_bsﬁs+6303.
a b o
a, by oy

Since rows and columns can be interchanged, it follows that
A= @A, — A, + agAs,
= —{5,B,— by By + b, B},
= Clal_CgC‘g‘}" c,C',.
It is convenient to take up the sign changes in the coefficients of the
elements and write
A= 4y B=-B; (= G
As= —Zz; By= By Cy=-0Cy
Ag= js; By=—By; Ci= Ca-
The terms A4,, B, . . . are called the cofactors of a, by, . . . Their
numerical values are obtained by evaluating the determinants remaining

when the rows and columns through their respective elements are
deleted; their signs are determined by the following rule:

Rule of sign. Start at the top left-hand corner and pass by rows and
columns, never diagonally, to the particular element counting +, —
alternately at cach element until the particular element is reached.
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Using cofactors the fundamental results for a third-order determinant
are

.......................

In general, the value of a determinant is the sum of the products of the
elements of any row, or coluwrm, and their corresponding cofactors.

Ex. 9. For the determinant |x v z| find; (i} the minor of r;
regr
yzx
(if) the cofactor of 4
() Minorof r, R = |x y|=xz~.
yz
(ii) Cofactor of g, @ = +|x zj =x%-yz,
y x
Ex. 10. Find the cofactor of f in the detervzinant a k gl.
hbf
gfe

There are two clements f, but A is symumetrical in f, g, 4, and the same
result will be obtained using either of the elements.

AT

(General theorems on cofactors.

I. The sum of the producits of the elemenis of any row, or column,
and their corresponding cofactors equals A,

A tesylt already proved for a third-order determinant which can
similarly be proved true of any determinant.

II. The sum of the products of the elements of any row (column) and
the cofactors of the corresponding elements of another row (column)
is zero.

For consider A=la, b, ¢;).
ag by
a3 by ¢
Then aydg+bBy+e,Co= —ay|b, c1|+blla1 cll—.':1 a b
dy & as by
=0, by Law II.

by &5
~|ay by
[ bl. (4]
g by cy

Similarly, for products @, 4+ 5, B; + ¢,Cy, 4,4, +5,B, + ¢:C,, ete.
This theorem can also be extended to determinants of any order.
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Ex. 11. If A=|a b ¢l, evaluate: () aA+pP+xX; (i) pA+qB+rC;

rpar

xyz

Gii) Ge+2b+ OB+ (3p+29+ 1)@+ (3x+2r+2)7Y.
(i) Using theorem I, ad +pP+xX = A,
(i) Using theorem II, pA+qgB+¢C = 0.

(iii) Expression =3 (aB+pQ+x¥)+ 2bB+gQ+yY)+(cB+rQ+zY)
=0+2A +0=2A,

EXAMPLES 3c
Express the following determinants as products of factors:

1. |e bl 2. |3x x‘. 3| a-b a+bd )
a® bt 4y 8y 2a-2b 3a+3b
4, |a2-0 2(a+b)"l. 5 | x 3y 22| 6. |0 6b 4c|.
(a-b® a+b 2x y 3z 4a 0 6¢
3x 2y = Ga 4b
7] 0 ® -2 8.1 11 9 |x x x x|
X-y p x+y a b e y ¥y y -y
y-x x 0 at bt & z z -z -2z
t —~F -t —1
10. | ¢ » 3z ¥ 11. 1 1 -1 1)
x 0 5z 2 b ¢ b b
Ix2y 0 ¢ c b ¢ -1
Sx 4y z O -1 -1 1 ¢
12. Find: (i) the minor, (ii) the cofactor of x in the determinant [0 1 1
1 x1
2 -11
13. Expand the determinant | 1 1 1 |
x+1 221 (x+1)F
-1 (x-12 x-1
14. Show that g+ b+ ¢ is a factor of the determinant Ja & ¢
bea
and find the second factor. cab
15. Find the cofactors of 4, &, ¢, £, £, h in the determinant |a & g|-
Rbf
gfc

16. Prove that =t - e — aXa- Ea+ b+

111
a b c
at b o8
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17. Find one root of each of the following equations by inspection and
complete their solutions:

(il-x 1 1 |=0; {ii}[x-2 1 x |=0;
0 2-x 1 3 x =2
1 1 3-x -1 x-4 x+1
Gnl2-x 2 3 |=0
2 S5-x 6
3 4 10-x
18. Provethat {x 1 1 1|= (J-x)*x+3)
1x11
11x1
111x
19, Factorise the determinants:
@) a ate ¢ |, (i) 1 1 /1 1y}
a b a+d x ¥ ; ¥
b+e b c 1 11 1
A TR (?"F‘)
1.1 (.1__1)
L o O
20, If A, B, ... are the cofactors of a, b, ... in the determinant
A =|a & ¢, ind the values of:
iﬁ r () (@+2p+3x)A+(b+2g+3y)B+ (c+2r + 32)C;
z

() (2a~b6+3C+(2p-¢g IR+ (2x-y+32)Z.

21, Show that x+y+z is a factor of the determinant

y+z -y 2
-X I+Xx -2
2x 2y x+y
and find the other {actors.

22. Express | 1 1 1 1) asa product of linear factors,
a b ¢ d
. B ]
bed cda dab abe
3.1 A= 1 1 1 ., where a, b, ¢ are
b+e cta at+h
Brbe+d S+ecatra® gtrab+ BB

unqual, prove by multiplying the columns by b-¢, ¢c—a, a- b, respectively
that A =0,

24, Prove that 1 1 1

a+b bt+e e+d
a+ab+b Bibe+t Eteod+d®

= (d— ala - cXb - d).




LINEAR EQUATIONS 65

25. If 4, B, . . . arcthecofactors of a, b, . . . inA=jay by ¢
ag by ¢
a; by ¢y
prove that B,C; - B,C, —a,A and write down similar expressions for
Cgt‘ls""‘ CaAg, AQ.BS - A,.Bg.
Deduce that |4, B, G,
Ag By Cy
Ay By Gy

= A(a]_Al + b].Bl + ‘-&Cl) =‘&‘o

Linear simultancous eqoations, Determinants can be used to
facilitate the solution of simultaneous linear equations. The method
will be illustrated for the cases of equations in two and three unknowns.

Equations in two wnknowns. Consider the simultaneous equations

ax+by+e,=0, . . . . . (i)
ax+by+e,=0. . . . . . (i)
Multiplying (i) by b, and (i) by &, and subtracting,

x(ayby— ayb)) = bycs — byt

Similarty, = Haybg—axl) = @103~ @ity
. x = _y = 1 -
L T @by — ashy
x =y 1 . (@A
l-e' bl Cy o a‘l C; - a‘l bl ( )
by 3| a2 g ag ba

where the signs in the numerators are alternately plus and minus and the
determinants are obtained from the set of ¢lements

a b oo
ag by ¢y
omitting in turn the first, second and third columns.

The general solution {A), which is readily memorized, is particularly
useful in analytical geometry.

Ex. 12. Find the point of intersection of the straight lines with equations
3x-y-2=0, x+y+6=0.

X _ -y 1
We have 1213 -2 |3-1'
1 6 11 e |1 1
x_-y_1
Le. 3" 20 4

The point of intersection is (- 1, - 5).
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Special cases. Referring to the general solation (A), it is clear that
exceptional cases arise if |q; 5] or ab,—a.b, =0

a; b,
When this condition is satisfied there are two possibilities, either

by ¢,| and [a; ¢;] do not vanish, in which case the equations have no

52_ Cy ay €y

finite solution and are said to be inconsistent, or |5, ¢,| and |a, ¢
b; ¢, ay Ly

also vanish, and then the values of x and y are indeterminate and the
equations are ao! independent.

It should be noted that when |a, &,|= 0, if either of the deter-
ay by
minants |8 i, lay c,[ vanishes so does the other, as in fact
by ca|l lag ey
&_b_ec
ay by o

There is a simple geometrical explanation of these special cases, for
the original equations can be represented as two straight lines and the
condition

a1 bl = *“agb,_:O,
& by
a_b
or a, b!

is satisfied when the lines are parallel and in consequence have no finite
point of intersection unless they are coincident. This latter case arises
when

&_b_a
a; b, o
i.e. when in addition one of the determinants |b, ¢;|, la; ¢;| also
by c3l gz ¢

vanishes.

Ex, 1) Solve the equations (1-x+2y~-1=0, x+y+4-1=0,
Discuss the case =~ 1.

We have 1

14 1[ ll— —l [1 RZI

1
9- 2:\ YU 5:a+5 a1
2%-9 3-5a+5S

Le. aiaEwn LS Al v

When X = - 1, the solutions are infinite, and in consequence the equations
are inconsistent. In fact, the equations become x+y-4=0, x+y+ 5= 0,
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Equations in three unknowns. Consider the simultaneous equations

ax+by+tez+di=0, . . . . (i)
ayx+bytez+d=0, . . . . (i)
ayx+hyy+osz+d,=0. . . . . (i)
Let 4,, B;, . . . be the cofactors of 4, 8, . . . in the determinant
A=|a b, ¢,
ay by ¢y
az b ¢a

where the clements are the coeflicients of x, y, z in the given equations.

Now multiply the equations (i), (ii), (iii} by A,. A,, 4, respectively
and add.

Then x{a,4;+ apds+ a3 Aq) + WA, + bgdg+ by Ag)
+ Z(C].Al + CgAg + CaAa) +d1Al + dgAz'i’ dsAs =0.
But alAl + ag-dz 4 agA;t = A and blAl + bsd.g + bSAS
= CIAI “I"chs‘}' caAa =0.
. XA= —(dy A, +dy A+ dydy)
dy by ¢ by ¢ 4,
d:l bs Cy bﬂ Cg da
Similarly, by multiplying the equations by B,, B;, By respectively,
YA=+

@ ¢ &
a, €y dy
@y O3 ds
a b 4
ay By dy
ay by dy

Also A= —

Combining these results

_ 1l . . (®

a b ¢
ay by oy
ay by oy

z
a b d
by c3 dy ay by dy
by ¢ dy a; b; dy

where the signs in the numerators are alternately plus and minus and
the determinants are obtained from the set of elements

x
by d| |a o dy
ay g dy

dy ¢ ds

ay by ¢, 4
a3 by ¢y dy
@y by oy dy

omitting in turn the first, second, third and fourth columns.
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Ex. M. Solve the equations
Ix-y+42+2=0, x+2y-z+3=0, -2x+3y+z-5=0,

‘We have

x - -y - - -1
-1 4 2 3 4 2 3 -1 2 I ~1 4
2 -1 3 1 -1 3 1 2 3 1 2 -1
3 t-sl |-2 1-5 |-2 3-s] l-2 3 1

x r..z .zl

-0 a4

i.c. x=-2, y=0, z=1I,

In dealing with linear equations in three unknrowns it is eften more
convenient to reduce them to two equations in two unknowns and
complete the solution from that stage.

Ex, 15, Soive the equations x-+y+ =0, 2x -y~ 3zm=4, Ix+3p =7,
Eliminating z between the first two equations gives
5x+2y=4.
Solving the equations Sx+2y-4=0
Ix+3y-7=0,
x -y 1
145127235+ 12 156
ie. BEELE AP EL
from the first equation, z=m -1
Special cases, Referring to the general solution (B), it is evident
that special cases arise if
A=

a by =0,
a4 b, ¢
ay by o

In this event either x, y, z are all infinite and the equations are
Inconsistent, or x, y, zare indeterminate of the form g and the equations
are not all independent, being equivalent to two independent equations

or just one.
L. The equations are inconsistent if A =0 and none of the determinants

Al—_" bl [~ d]_ » . A|= a5 Cy dl . Ag= 1Y b.l dl , vanish.
bg Cq d, a3 Cy dg ay bg ds
by ¢y dy ay 3 dy ay by dy

II. The equations are not independent if A=0 and also two of
Ay, As, Ay=0. In this event it can readily be shown that all the latter
determinants vanish,

Geometrically, as will be proved in a later chapter, a linear equation
in three variables represents a plane in three-dimensional space.
Consequently the system of three equations represents three planes
with the following possible configurations and results.
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(i) The planes meet in a point; the equations have a unique finite
solution.

(ii) At least two planes are parallel; the equations are inconsistent
with no finite solution and A=0; A,, A,, A;#0.

(iii) The planes intersect in three parallel lines; as (ii).

{iv) The planes intersect in a common line; the equations are not
independent, being equivalent to two independent equations
with a line of solutions and A=A, = A, =A,=0.

(v) The planes coincide; the equations are not independent, being
equivalent to a single equation with a plane of solutions and
.ﬁ=ﬁl=ﬁ,=.ﬁ3=0.

(vi) Two planes coincide and the third plane intersects them in a
line; as (iv}).

{vii) Two planes coincide and the third plane is parallel to them;
the equations are not independent and also inconsistent. There
are no finite solutions and A=A, =A,=A;=0.

In dealing with sets of linear equations it is important to remember

that the elementary method of solution is often the more convenient,

especially when investigating special cases, Both this method and the
determinant method will be illustrated in the following examples.

Ex. 16. Show that the equations 2x+5y+3z=0, x-y+4z=2,
Ty-5z+4=0 are not independent.

Method (). A=|2 § 3|=0, on expansion,
1 -1 4
0 7 -5
and A= 5 3 0|=0; As={2 3 8]=0.
-1 4 -2 1 4 -2
7-5 4 0 -5 4

Hence the equations are not independent.

Method (iiY. The result of eliminating x between the first two equations
is the equation 7y - 52+ 4 = 0, which is ideatical with the third equation.

Hence the equations are equivalent to the two equations 2x+ 5y +3z=0,
7y-5z+4=0. They are satisficd by all points lying on the line determined
by the two planes with these equations.

Ex. 17. Show that the equations x+y+z-1=0, 2x-3y-22+4=0,
3x-2y-2+2=0 have no finite solution.

Method (i). A=|1 1 1=0,
2 -3 -2
3 -2 -1

and A=l 1 1 -1|#0.
-3 -2 4
-2 -1 2

.. The equations are inconsistent and have no finite solution,
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Method (ii). Eliminating x between the first equation and the other
equations taken consecutively, leads to the eguations

Sy+4z=06,
Sy+4z=35.

These equations are cleatly inconsistent, and in consequence so are the
original eguations.

Ex. 18. Of the equations x-y+2=5, 2x+y+4z=12, 3x+3y+7z=18,
4x — y+ 6z =22, one is inconsistent with the other three. Find this equation
and modify ity constant term in order 1o make it consistent with the others.

Eliminating x between the first equation and the other equations taken
consecutively leads to the equations

Iy+2:=2, . . . . . . . D
6y+4z=3, . . . . . . . (i)
Iy+2z=12, (i)

As (ii) is inconsistent with (i) and (i), it follows that of the original
equations, the third is inconsistent with the others; by changing the constant
term of this equation to 19, (ii) becomes

6y +4z=4
ie. Iy+2:=2,

and the equations are now consistent. They are in fact not independent
and have a line of solutions.

Ex, 19. Solve the equations 2x-y+z=0,3p+z=0, x+y+az= b, where
a and b are constants with a# 1. Discuss the case a=1.

We have x e z __ -1
-11 0f 21 o [2-1 o] [2-11
31 of o1 o (e 3 o [0 31
la -5 la -6 1 1 -5 1 1a

i x_-y_ .z -1

Lo B "2 J6b"6a-6

So if a%1; x 2 =5 b

“Na-O ?TiE-D

If a=1 and 5+0; x, y, z are each infinite and the equations are
inconsistent.

Ifa=1and b=0; x, ¥, 7 are each indsterminate and the equations are not
independent.

EXAMPLES 3d

Solve, where possible, the following systems of equations:

1L 2x-y+3=0, 2, 3x-4y+1=0, 3. 6x+y+3=0,
x+2y-1=0. x+2y-3=(}. Ix-2y+9=0.
4. x+y-4=0, S Sx+2y-5=0, 6 3x-2y-1=0,
2x+2y-3=0. x—-y—-8=0 9x - Gy—-3=0.
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T 3x-Ty-35=0, 8. 3x-Sy+10=0, 9, x+3y-10=4Q,

2x+5y-4=0. 6x— 10y + 17 =0. ~x+4y =0,
10, x+y+z-2=0, . 2x-y+z-3=0, 12, x+y~-10=-0,
x+2p+32-1=0, x+2y-2z-1=0, y+z-3=0,
Ix-y=-5z-1=0. ix+y+z—-6=0. x+z+1=0
13, 2x-y-z=§6, MM, x+2y-32=0, 15, x+y+z-1=0,
x4+ 3y+2z=1, Ix+3p-2=35, 2x-3y-2z+4=0,
Ix-y-5z=1. x-Zy+2z=1. 3x-2y—z42=0.
16, Tx+y-22+9=0, ¥ x+2y-z+3=0, 18, 2x3+4y-z+3=0,
x-2y-z+2=0, 2x+y+z—-1=9, 3x-5y+4z-5=10,
Sx+y-z+5=0. 3x+3p+2=0. Sx-y+3z2+4=0.
19, 4x-y+3z-7=0, 20, —3x+¥p+22~5=0,
2x+3y-22-4=0, Sx—2y+z+6=0,
x-4y+z=0. 2x+y+3z+1=0.

21, 3x+y-22-3=0,
-9x-3y+62z+9=0,
bx+2y-dz-6="0.
22. Find the points of intersection of the following pairs of straight lines:
(i) 2y-x+6=0, (i) dx-y+1=9, {iii) 2x+ 5y =1,
x+3p-2=0. Ix+Tv-3=0. 3x—dy=-4
33, Solve the following systems of equations for the ratios x: y: z:
@ 2x-yrz=0, {i)x-3y+2z=0, (i) 4x-2p+z=0,
Ix+2y-42z=0. 2x+5y-z=0. 3x+5y—-4z=0.
24. For what values of A are the equations 2x-(+2y-1-= 0,
6x - 3y-2=0: (i) inconsistent; (ii) not independent 7

25. For what vatues of . are the following sets of equations consistent?

) x+3=0, (i) 2x-py+3=0, (iii} 4x+y-7-0,
y'—2=0, x+y_4=0, x‘—y‘*'[l=0,
x+y+u=0. 3p-11=0. Ix—py-1=0

26. When x =2, - 1, 1, the function ax? + bx + ¢ takes the values 15, 9,3
respectively, Find the value of the function when x =0,

27. For what values of » are the following systems of equations: {a} incon-
sistent; (&) not independent?
() 2x-wy+dz=1, Gi) d»x+2v+z=10, Gy  3x—ay=6,
x-y=2, Ix-2z=4, 4y +az =1,
x+2y-4z=1. Ix- 6xp -4z =14 Ix+6p+dz—4
28. Solve the equations x+y+z:=1, ax+by+ez=Fk, a&x+b%+ ciz =2
if 4, b, ¢ are nct zero.
29. Solve the equations Sx+2y=3, 2x+3p-5:-=1, Ax- Sy+15z=p.

For what values of » and i are the equations: (i) inconsistent; (i) not
independent ?
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M. Provethattheequations x+y+2<0,y422-4=0,2¢+ Sy +6z-8=0
are not independent and show that their solutions can be expressed in the
form x =2.- 6, y =4 - 24, z =1, where A is a parameter.

31. Solve the equations Sx+y-2z=0, 13y+3az=b, 2x+av+z=1 and
discuss the special cases: (i) a=3, b+5; (iiya=3, b=35.

32. One of the following equations is inconsistent with the others. "Find
this equation and by a medification of its constant term make it consistent:

i x-y+z+2=0; (i) Zx+2p+ 2+ 7=0;
(i) 3x+5y+z+12=0; (v dy-z+4-0.

33. Solve the equations dx+y+z=1, x+iy+z=% X+y+iz=iZ
Examine the special cases: (i} A=1, (i) 2= -2.

34. Solve the following systems of equations by first reducing them to
¢quations in three unknowns:

() 2x+p+2z-t=6, x—z-2=0, Iy+z+¢t=1, dz+2r=5.
() x+p+z+1=x-y+z-t+4=2x-3p—-=2-3¢-5
=3x-2y+2z+ 514120,
35, For what values of X are the following eguations consistent:
2x-ap+2z=0, x+y-z=4, dx-y+z=2, Tx-Sy+6z=1"7

36, The expression ax®-+bx*+cx+d takes the value zero when x -1
or -4 and takes the valu¢ 3 when x= -1 or 2. Find the value of the
constants a, &, ¢, d.

Homogeneous linear equations. Linear equations of the forms

ax+by=0, . . . . . . (i)
ax+by+ez=0, . . . . . (i)
where the constant terms are zero, are homogeneous. Such equations
are always satisfied by zero values of the variables;
e.g. cquation (i) is satisfied when x=y =0,
equation (ii) is satisfied when x=y=2z=0.

Consideration will be given here to the conditions necessary for sets
of homogenecous linear equations to have solutions in which all the
variables are not zero.

Equations in two unknowns. Consider the equation

ax+by=0.
Apart from the obvious solution x=y=0, we can look for other

solutions by assuming at least one of the variables is not zero, say y,

and dividing the equation by this variable.
Le. ﬂ1§+bl=0; x_ b
¥y i g U5

Hence the equation can be solved for the ratio x: y.



HOMOGENEOUS EQUATIONS 73

The condition necessary for two equations ayx+b,y=0, ayx+b,y=0
to be satisfied simultaneously by values of x and y not both zero is readily
oblained.

The required condition is b *-fi*:
ay a:
ie. . by —ayh, =0
a _bl =
or a, b 0.

It is easily shown that the converse resuit is also true.

Ex, 20. Find the values of % for which the equations (A-1x+2y =0,
dx+ (h+ Dy = 0 can be simultancously true for non-zero values of both x and y.
In each case, give the value of the ratio x: y which satisfies the equations.

The required condition is
A=-1 2
| 4 1+1|"0'
Le. M-9=0; r=:3
When 2 =3, the equations become 2x+2y=0. . x:y=-1:1.
When % = - 3, the equations become —4x+2y=0. . x:y=1:2

Equations in three tmknowns. The two equations
a4 x +b1y + 2= 0,
axx + by + oz =0,

can be solved uniquely for the ratios x: y:z, except in the cases when

(@) x=y=2=0, (i) g—‘=g-1=-z—, in which event the equations are
2 i
identical.
For assuming z+ 0 and writing X =§. Y= g » the equations become

01X+ b‘l Y+Cl= 0,
4, X +by Y+ =0,

D S 1

by 6 "101 P Ia, b,

by sl 14y ay by

x -y oz

ie. h ¢ |j& @ Tla By

by 4 day €o| |G b2
or xiy:z=|b c,l e c,|: a b,l.
b’ Cy g c. Gy b‘l
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Ex. 21. Solve the equations 3x+y-4z=0, 2x+3p+1=0 for the ratios
X:y:z

X - z
We have 24

1 -4 [3 -4 [31]
3 1| [2 1] |23

or x.prz=13: -11:17.

If there are values of x, y, z not all zero, such that the eguations
@ x+hy+ez=0, ax+by+cz=0, @x+bytcz=0 hold simui-
taneously,

then ay by ¢ =0 and conversely.

For assuming z=0 and writing X= g Y= 2’ the equations become

01X+bl Y+ (.'1=0,
agX+b3Y+Cg=0,
%X‘}“bs},‘l'ffs:o-

From the last two equations,

. X = Y B 1 .
bg Ca - dz Oy - ta bz ’
by a2y €3 ag by

Substituting for X, ¥ in the first equation,

allbz Czl _bIFas Cs +Cl 0‘3 bg =0
by fs' ay Ly as; by
i.c. Az (2% bl Cl =0.
a, by ¢
ay by ¢y

Conversely, if A=0, then
a A, + BB+ Ci=A=0
and asd; + By By +0,C =0,
s A, + by B, +¢,C, =0,
where 4,, By, Cy are the cofactors of a;, &y, ¢, in A.

But all three of 4,, B,, C; only vanish if ?=g—”=?’ in which case A
3 2 3
vanishes identically,

Consequently, it A=0, then there exist numbers x, y, z not all zero,
where x:y:z=4d;: B,: C}, such that the three equations

axt+hytez=0, axt+by+e,z=0, ax+bytez=0
hold simuitaneously.
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Ex. 22 Find the velues of * for which the equations 3x-y+:1=10,
Ix +ay - 52=0, Ax— 3y+ 4z=0 are consistent for non-zere values of x, y, z.
The equations have solutions other than x =y =z=0, if

3 -1 i|=0
3 a-5S
-3 4
Le. A 1T -42=0
a=3, 14,

Ex. 23. Prove that the straight lines 5x-3y-2=0, x-2y-1=0,
2x + 3y + 1 =0 are concurrent.

The straight Jines are concurrent if there are values of x, » which satisfy
the three equations simnltaneously.

Consequently, making the equations homogeneous by writing z=1, it is
necessary to show that the eguations S5x—3y-2z=0, x-2y-2z=0,
2x+ 3y +z =0 are consistent.

This is 50 because A=)§ -3 -2j=0.
1 -2 -1
2 3 1
Ex. 24. Eliminate », u from the equations x—= _2_1-!»_‘, y=—P-'-—: z——"’--
) 2+1 2+1 a=1

The equations can be expressed in the form

Xh=2u+x1=0,
2h—pryl=0
A-p-z1=0

Treating these as equations in %, g and 1, it follows that as they are
consistent

x -2 x|=0
2y -1 »
r -1 -~z

or - 6yz+2zx —xy =0,

EXAMPLES 3¢

1. Prove that the following equations are comsistent: (i} 4x—3y=0,
6y--8x=0; (i) x+3y=0, —2x-6y=0; (i) ax+by=0, abx+ By =0.

2. Find the values of  for which each of the following sets of equations
are consistent for non-zero values of both x and p.  In each case give the
ratio of x to y.

) ax+4v=0, (i) 8x—3y=0, (i) G- 1}x+»=0, (iv) Wy —dy=0,
2x-y=0. x—2y=0. 2x +dp=0. ix—y=0.
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3. Write down the result of eliminating x, ¥ from each of the following
sets of equations:
() px—qy=0, (i} Ix+mp=0, (i) ax+by=0, (iv)ax+by=x-y,
qx+py=0. 2x +3y=0. ax-by=0. ax-by=x+y
4 If ax+by=bx-ay=0 where x#0 and a+b0, prove that
a®+ 5% =gb.
5. Solve the following sets of equations for the ratios x: y: z:
) x+y+2z=0, (i) 3x+4p-22=0, (i} —x+mp+gz=0,
2x-y+z=0. 2x-3p+32=10. —x+my+rz=0,

6. Eliminate x, y, z assumed not all zero, from each of the following
systems of equations:

() ax+by+cz=0, (ii) my+nz=0, (#it) x+y+z=0,
Ix-y+2z=0, Ix+mz=0, XXy + yp +25=0,
x+2y—z=0. x+p+z=0 Xxg+ ¥g+ 22y=0,

7. Prove that each of the following sets of straight lines is concurrent:

) x+2y-3=0, (i Iy-x=0, (iii} ax-+by=1,

Jx-p+1=0, x+y+5=0, bx+ay=0,
x-5y+7=0. 2y-2x-5=0. {a-b)x +(b-hay)=1.

8. Find the values of » for which the equations
M4y +i=0, x+(-2p-2=0, 4x+2-1=0
are consistent and in each case complete the solution of the equations.

9. Eliminate x, y, z from the equations
ax+hy+gz=0, hxibp+fi=0, gx+fr+ez=0,
10. Find the values of * for which values of x, y, z, not all zero, can be
found to satisfy simultansously the equations in each of the following sets:
i) 2x+y+z=0, (i) x+3p+2z=0, () (1 -Nx+y+2=0,
X+y-2z=0, Ax-y—-z=0, Z2-y+z=0,
Ax+2y-z=0. 9x—2y—2z=0, X+y+(3-1)z=10.
11. If the four equations x+y+z=0, x-2p-2=0, ax+by+¢z=0,
bx+ey+az=0 are satisfied simultaneously by non-zero values of x, y, z,
determine the values of the ratios x: y:zand g: d: c.

12, Eliminate x, y, z, assumed not all zero, from the equations:
GY x+by+cz=0, ax+y+ez=0, ax+by+z=0;

N X, Y 2. _
(i) p =7 TTi=x iy (x#y#z).

13. Show that the result of ¢liminating 3, ;¢ from the equations
X=AXy+ WXy, F=Ap+p¥a, I=lz Fui
can be expressed in the form jx » z 1=0.
ona
Xz Va Za
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14. By writing X =xy, Y=x+y, Z=1, eliminate x, y from the equations
axy+bfx+y)+e,=0, apy+blx+y)+c=0, xy-Hx+y)+£=0
leaving the result in a determinant form.

-7 T,
18, If !_a+x' m=p o m=_ prove that

pmnl(h - ey +qul(c — @)+ rima - H)Y=10.

MISCELLANEOQUS EXAMPLES
1. Solve the equations
x+y+62z=2, 6x-5y-18z=-10, 4x-2y-3z=-9.

2, Prove that 1 1 1 =0,
be o ab
P+ bt Fareat  ath+ab?

where X, -Y_,f are the minors of 2, ¥, 2 in the determinant |x »
! mn
'mn
4, Factorise: (i} |1 LI 1|; Cid |1 1 1].
a b c a b e
at B & o BB

5, Solve the equations x-y-3z=0, 2x+y-3z=0, x+y-xz=02 for
z, y, 7 and give the limitations on the value of .

6. Solve the equations:

W §3x-2 2 3x
4 x+1 1
2x 1 -1

=0 (i) la a x|=0.
cce

bxbd

7. Eliminate x, y, z from the equations a= * - -
y-z Z—-Xx X~y

Xx+2 3 3
3 x+4 §
3 5 x+4

9, Solve the equations
xty+z=at+tbtce, x-y+2z=22b-¢), ax-by+ez={(b-a+cHb+a-c)

8, Factorise A= and hence solve the equation A=0.

10. If @, b, ¢ are unequal and |} be+ax @°)=0, prove that x=a-+b+¢,
1 ca+bx bt
I ab+cx &
11, Evaluate: (i) [ 1 L|; (i) @+ +2e a b
i1 1 c b+ec+2a b
T ¢ a cta+2h
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12, The expression ax®+bx? +cx+d takes the values 1, 0, 4, — 11 when
x equals 1, 2, — 2, 3 respectively. Find the value of the expression when

x equals 0.
1% I ax+ by +cz=0=xfa+y/b+z} that =~ + 2 + % _o
e yreE=TEHaATY ¢ prove tha bte cta a+b
u—-b-¢ 2a 2a is a perfect cube.
26 b-~c-a 2b
2¢ 2¢ c-a-b

14, Prove that

15, Of the four equations x+3y+4z=1, x+y-2z=0, 2x+3y—z= -1,
¥+ 3z =1, one is inconsistent with the other three. Find this equation and

maodify its constant term to make it consistent.

16. If @, b, care unequal and|a®*+a®> @ 1]=0, provethata+b+c+1=0,
B b1
2+t el
17. Prove that [1+x 1 1 1 |{=xplxy+2x+2y).
1 1+x 1 1
1 1 1+» 1
1 1 1 1+y ’
18. Ewvaluate the determinant [l1+a b c |
a 1+b ¢
a h l+c
19, Sclve the equation | 2x x+1 2-x|=0.
x+3 4 i
3-x 2 -4

20. Prove that

a~-xp (a-yP (a-zP

(-2 (b-y)® (b-2)°

(e—xP (c-y? (c-2P*
21, Solve, if possible, the equations x+y+kz=4%k, x+ky+z=-2,

2x+y+z=-2,inthe cases: (DknotequaltoQorl; (iYk=0; @ii)k=1.

=2(b ~ e)c - ala - b)Yy ~ 20z — X)(x - ¥).

a b c
b+c cta a+b
@ —abec B¥-abc A -abe

22, Factorise the determinant

23. Prove: (i) [1 11 1|={b-a)® (i) lab ab|=0.
baab baba
abaa ccdd
aabhb ddce

24, Solve the equations:
l2-x 1 1

4-x3-x4-x

3-x 2 T-x

X x+2 x-2|=0.
2y x+3 x-3

3x x+4 x+4

=0; (D
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25. Prove that if ax+dy+cz=0, bx+cy+az=0, ex+ay+bz=0 arc
simultaneously satisfied by non-zero values of x, y, z and if @, b, ¢ are real,
then either a==b=¢ or a+b+c=0. In the latter case prove that x=p=

26. Find the square root of the determinant

0 a b ¢l
-a 0 d e
-b-d 0 f
—ec-e~Ff 0
27. Prove that the two determinants
a b c | 1 11
& 8 3 | abe
b+ecetaatb] | B A

have the same linear factors.

28. Prove that |[2bc—a® & &
Zca-b B
& & 2ab-ct

express the determinant as a product of real factors.

is divisible by abc{a + b + ¢} and

29. Find the three values of A for which the equations >x+9p 4 62=0,
X+3iy+2z=0, Tx- y +*z=0 can be simultaneously true for non-zero values
of x, yand z. In each case give the values of the ratios x: y: z which satisfy
the equations.

30. If by equating each ratio to w« and

=0

ay+idy b,+)ub2 c1+3\c,
1 -8 02
eliminating the ratios 1:%:p, show that gy b ¢
ag by o
1-9 &

31. Find the values of a for which the equations x+&%y+a=0,
ax+ytat=0, a®x+ay+ 1 =0 are consisient.

B4+3243 2%+ )8+ 1 2B A2
»+1 2xt+3 x242)3
»+2 2x%1 4 X248

bed]; (i) at B d).
abce X2 gt B A
dab x a b ¢
cda 1111

32, Expand the determinant

33. Factorise: (i)

34, Find the values of » for which the eguations 5x-2y-62z=73x,
2x - 3y - dz=21p, x+y=>2z, may be satisfied simultaneously by values of
x, ¥, z not all zero.

35. Prove that 3 is the only real value of ) for which the equations
—Ax+y+22=0, x+2y+3z=0, x+3v+rz=0, where x, y, z are not all zero,
are consistent.
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36, Expand the determinant| -1 cos i cos¢
cosyfy ~1 cosb
cos¢ cosB -1

4 cos x cos (x - 8) cos (x— ) cos (z— ) where « =B+ +4).

37. Solve the equations ax+by+cz=0, x+y+z=0,

and show that its value is

point out the special cases which arise.

38 Provethat | 0 g b x|=-{cx-by+az)ep~bg+ar)

-a 0 ¢y
-b-c 0 z
I
39, If z =(1 + a®x and z is given by the equation
z 2al-a*=-0,
1-a® z 2a
1-a* 202 z

and @ has the value Tl/_fi’ show that the two possible values of x are sin%

. n
and sin 3

40, Show that the simultaneous equations ax+y-+z=p, x+ay+z=g,
x+y+az=r, have a unique solution if a has neither of the values 1 or — 2.
Show also that, if @« = — 2 there is no finite solulion unless p, ¢, r satisfy a
certain condition, and then there ate an infinite number of solutions.
Discuss the case a=1.



CHAPTER IV

MORE ADVANCED ANALYTICAL GEOMETRY OF THE
STRAIGHT LINE AND CIRCLE

Applications of determinants

L. Equation of the straight line determined by the two points

(xls yl.): (xss J’g)-
Suppose the equation of the line is

Ix+my+n=0. . . . . . . (O
As this equation is satisfied by the values (3, 3y), (%3, Vo),

ey tmy,+n=0, . . . . . . (i)
I, +my+n=0. . . . . . . (iii)

Eliminating 7:m:n from the equations (i), (i), (iii) gives the
equation of the line in the form
ix y 1|=0.
X ¥ 1
i% ye 1

An immediate corollary of this result is that, if the points (x, y1),
(%3, ¥a), (X3, y3) are collinear then,

xl yl 1 =0.
Xy ¥y 1

X3 ¥ 1

and conversely, if the determinant vanishes, then the poinis are collinear.

Ex. 1. Find the equation of the straight line joining the points (-3, 4), (2, 1}.

Required equation is xy 1l|=0
-341
211

ie. 3x4+5y-11=0.

II. Point of intersection of two straight lines.
Suppose the lines have equations

}1x+mly+?’l=0,
bx +mgy +n,=0,
81
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Then solving the equations, the point of intersection is given by

x Ty 1
my ”tl_ homl [l omy
Mo Hy Iy my I my

As a corollary it follows that, if the three straight fines

hx+tmyy+m =0,
Lx+myy+n,=0,
Iyx +mgy+n,=0,

£ my 0| =0, and conversely.
I my n,

Iy my ny

are conclrrent, then

Ex. 2. Find the value of 1 if the straight fines dx—y+1=0, 2x—3y+2=0,
X +4y - 1=0 gre concurrent.

We have -1 1=0,
2 -3 2
i 4 -1
ie. -5+7=0; x=%

Ill.  Area of the triangle with vertices A(x,, yy), B(xy, ¥2), C(xs, ¥s).

Equation of BC is x y 11=0
X ¥ 1
Xy py 1
Hence, as the length of the perpendicular from (x;, yy) to the straight

. , by +e
line ax+by+c=01is + %@_ﬁ!ﬁ)ﬂ it follows that the length of the

perpendicular from 4 to BC is
Exp 3 A - y)t+ (o2 — x3)%.
X yp 1
X3 yg 1
Also the length BC = 4/{y,— y5)® + (% — x,5)8).
S Area of LABC =43 |x, ¥y 1.
Xy ¥o 1
X3y, 1
Sign of area—it is usual to treat the area as positive when the vertices
are taken in counterclockwise order.

Ex. 3. Find the numervical valne of the area of the trianple with vertices
(3$ 2)) (_ ]1 4); (29 7)-
Area=-£%| 3 2 1| =9 unit* numerically.
-141
271
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EXAMPLES 4a

1. Find the equations of the straight lines determined by the following
paits of points:

@ (3,4, (- 1,3, (i) (2,0),(-3,4);
(i) (-5,1), (-2, -2); (iv) (a,b), (b, a).

2. Prove that the following sets of points are collinear:
@ (1,1, (-2,-8),(,13); (i) (; 2, 3}, 1,9, (-5,-3)%
i) ¢, 9, 0,0, {7 —7)-

3. Find the coordinates of the points of intersection of the following pairs
of straight lines:

() 2x-y+3=0, i) dx-y=1,
x+3p-1=0. 2x+3y=>5.
(iii} 5x+7Ty-3=0, v) 7y-3x=2,
3x+4p+1=0. 2y+4x=-35.
4. Show that the following sets of straight lines are concurrent:
() 5x+2y-8=0, (i) 3x-y+4=0,
x-5p+2=0, x+5—-1=0,
x+Tyr—-6=0. bx+14y+1=0,
(i) x—-6y+2=0, (iv} x+y=0,
Ix+5y+6=0, x—-y+1=10
1lx+3y+22=0. x(1+2)—3(1-2)+1=0.

5. Find the arcas of the triangles determined by the following sets of
points:

(i) (01 0)! (31 2)9 (4) 3)‘ (]i) (0: 0), ('_ s; - 3)r ( - 61 - 8)-
(i) (1, 2), 3, 4), @2, 6). (iv) (-4,3,3,-2,0, -4).
™ (-3 -2,0,9,@223. (vi) (2, 1), (22,30, (4, 22).

6. Find the equation of the chord joining the points {atj?, 2az),
(at52, 2at,) on the parabola »* = 4ax.

7. Find the coordinates of the point of intersection of the tangents
thy - x=at? t,y—x=at? to the parabola y® = 4ax.

8. Find the values of & for which the following sets of straight lines are
concurrent:

i x-4y+3=0, (i) x-w+2=0, (iii) >x+y-5=0,
Zx-3p+1=0, x—-y+3=0, Ax-2p-4=0,
x+3vy-6=0. x+2y=0. ZBx-9p+1=0.

9. Find the equation of the chord joining the points (ctl, ‘:—) (c:,, <
1
the rectangular hyperbola xy = &2,

10. Show that the area of the triangle with vertices (f,7-2), (#+3. 1),
{£+2, 1+ 2) is independent of r.



B4 MORE ADVANCED ANALYTICAL GLEOMETRY

1. Find the equation of the chord joining the points (1% #,%, (&3 %)
on the curve 3® = x%,

12, Prove that the points (3 + 44, 2 - 6f) where £ =£,, 13, fy, are collinear.

13. Show that the area enclosed by the straight lines x =a, y=b, y=mx is

i ]
o b - ma).
14. Find the area of the triangle whose sides are the lines 2y +x=0,
Iy+2x+4=0, 2p+Ix+9=0,

15. Find the area of the convex quadrilateral whose vertices are the points
(2! - ])l (59 0)! (4; 6)9 (0; 3)'

The line pair, Consider the two straight lines
hx+my+n=0,
Lx+my~+n,=0.
Then the equation
(hx+my -+ ipx+myy+ny) =0
is satisfied by the coordinates of a point on either line and by no other
values. It therefore represents the two lines as a combined locus of
the second degree ia x and y.
Conversely, if a second degree expression f(x, y) can be exptessed
as a product of two linear factors, then the equation
. ) Jix, »)=0
represents a line pair.
E.g. as the equation
xt—xy—-2y*txt+4y—-2=0,
can be written
(x+y—D(x—-2y+2)=0,
it represents a line pair made up of the lines x+y—1=0, x— 2p+2=0.

Condition for the general equation of the second degree to represent

a line pair. The geperal equation of the second degree is
ax®+2hxy+ by*+ 2gx + 2fy+-¢=0.

Suppose ¢+#0; multiplying throughout by a and completing the

square of the terms in x,
L.H.S. ={ax +hy+ gt —*y® +aby*— 2hgy + 2afy + ac—g*
={ax+hy+ g —={yHH—ab)+ 2(hg — af )y + (g8 —ac)}.

For the equation to represent a line pair, the L.H.S. must be the

product of two linear factors in x and y. This will be true, if, and

only if,
y¥(h?—ab) + Xhe—af )y +(g*—ac)

is a perfect square.
. The required condition is that

(hg — af * = (h*— ab}g*— ac).
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Expanding and removing the factor a,

abe 4+ 2fgh—af? —bg? — ch?*=0,

ie. albc —f*)— h(ch— fg)-- g(f1— bg) =0,
or A=la h g|--0.

hbi

g fc

This condition is readily shown to be true also in the special cases
a=0, 620, a=0, b=0, i£0.

Ex. 4. Find the value of » if the equation Axy+3x+ 3y -+ 2=0 represents a
kine pair.

We have

A=10 % $|-0
jod
772
i.e. 02 5=0
A0 3
534

HE-300=0; =0, 5

. When =0, the equation represents a single straight line and so the
required value of x is 13-

Ex, 5. Show that the equation x%~ xy—2)2~3x+ 9 -4=0 represents a
line pair and find the point of intersection.

Ag the separate linear equations are reguired, it will be simpler here 0
show that the second degree expression does factorise.

x—xy -2 =(x - )(x + ),
SR —xy -2~ A+ 9y -4 =(x-2p+ Ax+y+ B
Equating coefficients of x and y,

A+B=-13, A-28B=9;

So the equation can be written

(x-2y+1x+y-4)=0— a line pair.
Solving the equations
x-2p+1=0,
x+y-4=0,
-Fy

X _ 1
77573

,. The point of intersection is (g g)
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Line pair through the origin. Consider the homogeneous equation
of the second degree

ax®-+2hxy +byr=0.

J— 2
Solving for y, p= w »

.. The equation represents a pair of straight lines passing through
the origin.

) A2>gb, the lines are real and different;
if JA®=gb, the lines are real and coincident;

if  A*<ab, the lines arcimaginary and the origin is the only real point
satisfying the equation.

Hence, any homogeneous equation of the second degree, that is, of the
Form
ax®+ 2hxy + by2=0,

represents a line pair through the origin.

Ex. 6. If one of the lines of the line pair 3x* + 2hxy — 2V =0 passes through
the point (1, 2), find the value of h.
The equation is satisfied when x =1, y=2.

o 3+4h-8=0; k=%

Equation of the line pair joining the origin to the points of intersection
of a given straight line and a given conic, Suppose the straight line has
equation Ix+my=1,
and the conic,

ax®+ 2hxy+ by2 4 2gx 4 2fy 4 ¢ = 0—the general equation
of the second degree.

Then any equation derived from these two equations will be
satisfied by the coordinates of the common poiats of the line and the
conic.

Consequently, a homogeneous equation of the second degree derived
from the two equations must represent the line pair joining the origin
to the points of intersection of the line and the conic.

This homogeneous equation is obtained by using the linear equation
to make the quadratic equation homogeneous by multiplying the terms
2ex, 2fy by (Ix+my) and the constant term by {(Ix +my).

The equation of the line pair is
ax®+ 2hxy+ by® + 2gx + 20)(x + my) + e(fx +my) =0,
or  x¥a-+ 2gl+ clf)+ 2+ gm+f1+ clm) - yHb+ 2fm+ cm®)y=0.
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Ex, 7. Find the equation of the line pair joining the origin 1o the points of
intersection of the straight line x +y — 2 =0 and the circle x1+ y* =8,
Writing the equation of the ling in the form

1=Hx+»,
the required equation is
X+ 2 =Bl x + )P
i.e. x*+4xy+y=0.

Ex. 8. Find the equation of the circumcircle of the triangle formed by the
line pair ax2+ 2hxy +by2=0 and the straight line Ix+ my =1.
As the circle passes through the origin €, its equation is of the form
xR 4 2gx + 2fy =0.
Then the equation of the line pair 04, OB /
(Fig. 42) is
22+ 2+ Qex+ 260 Ix + my) = 0.
B+ 28D + 2x(gm+ FO+ (1L + 2fem) = 0.
But the equation of the line pair is

ax®+ 2hxy + byt =0, © X
. 1+2gf_gm+ﬂwl+2ﬁn Fra. 42,
" a h b
ie. glam - 28I + flaly— k=10,
g(mb) + f(b - 2hmy— h=0.
Sclving,
g - -f - 1
—ahl + BRI - 2k%m 2M3— ahm+ bhm  (am - 2kIXbi - 2hm) — abim
l(a— b)+2hm mih—a)+ 2k

= Sant—2im+ 5 1 Aam® = 2him + %)
Hence the equation of the circumcircle is
(arm® - 2him + bI%Y(x3+ y5y + x(la - ib + 2hm) + y(mb — ma+ 2hl)=0.
EXAMPLES 4b

1. Write down, and expand, the combined equation of ¢ach of the
following line pairs:

@ x+y=0, (i) 2x+3y=0,
x-y=0, x=-2y=10.
(i) x—y+1=0, (v 3Ix+2y—5=0,
X+p+2=0; 2x-yp+1=0.
2. Find the equations of the separate lines in each of the following line
pairs:
@) 2 -xy-y1=0; (i) (x+2P - y*=0;

(i) Zx-y+12-(r-3=0; (iv) 322 - Sy~ 2+ x+ Sy~ 2=0;
) xp-3x+ty-3-0; (vD) 222+ 2xy—-Sx-Iy+3=0,
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3, Determine which of the following equations represent line pairs;
@) 3x%+ xy-42=0; () 4x2- 514 =0,

(i) x2- 2+ 3x-2p+1=0; (iv) 6xf+xp~-y - 3x+y=0;

W xE-2xy+ @8- 3x+4y-2=0; (vI) 2xF~xy+5x-2p+2=0.

4, Show that the equation 2x*-7xy+3y®+x-8y—3=0 represents a
line pair and find the point of intersection.

5, Show that the equation x*-—d4xy+4y*+3x-6y+2=0 represents a
parallel pair of lines.

6. If one of the elements of the line pair 3x®+ 2hxy - ¥*= 0 passes through
the point (2, 6), find the value of A.

7. Find the vatues of & for which the following equations represent line
pairs:
() 22—+ d4x+ 2y4+3=0; (i) 2x® - 3xy+ 5x - 2+ 2=0;
(i) 262 - Sxp+ 328+ 6x —dp +4=0; (iv) 2+ 3ay+ 32+ 3xt+y-2=0;
V) 20— xy - B+ x4+ ¥)=0; {vi) a2+ 42~ 4+ My - 2)=0,

8. Prove that the lines x®- 3®+x—y~=0 are concurrent with the fines
93 - 324 0x-p+2=0.

9. Find the coordinates of the points of intersection of the straight line
x+y+1=0and the line pair 2x2 - 3xy - 2%+ Tx+ 6y - 4=0.

10. Find the equations of the line pairs joining the origin to the points of
intersection of the following conics and straight lines:

(i) circle x2+ 3@ =4, straight line x+ y=1;
(i) ellipse x®+ 8y% =8, straight line x - 2y =1;
(iii) hyperbola x* - 4% =4, straight line x - 2y-2—=0:
(iv) parabola y® =4x, straight line x -y~ 2=0;
(v¥) circle x®+ 32— 2x + 4y +1 =0, straight line 2x~y+1=0;
(vi} hyperbola x®- 32+ 8x - I =0, straight line x- 3y+2=0.

11. Find the equation of the lines joining the origin to the points of inter-
section of the line pair 2x?+2xy—5x-3p+3=0 and the straight line
x—4y—-1=0.

12. What is the condition that the equation ax?+ 2kxy+ bp2=0 should
represent a line pair equally inclined to the x-axis?

13. Find the area enclosed by the lines ¥2+ 3xy + )2 = 0 and the line p=2.

14, Prove that the equation x2+6xy+9y%—2x—-6y+ 1 =0 represents a
coincident pair of lines and that the equation x® + 6xy + 952 - 1 = 0 represents
a paralie! pair of lines.

15. Find the equations of the three line pairs formed by the pairs of opposite
sides and the diagonals of the quadrilateral with wvertices (1, — 1), (0, 2),
(-2,1) (3,0

16. The vertices of a triangle are 4(2, ), B(-3, - 2), C4, 4); find the
equations of the line pairs formed by the sides BC, C4, 48 and the altitudes
corresponding to them.
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17. Find the equation of the common chord of the two circles
P -dx-3y+1=0, x¥+)2+2x+3p+2=0
and hence find the equation of the line pair joining the origin to the common
points of the two circles.

18. Show that the area enclosed by the line pair ax®+ 2hxy+ 5)2=0 and
the line y=cis %’\/(h*— ab).

19. Find the equation of the circumcircle of the triangle formed by the
straight line x - y + 1 =0 and the line pair x?+ 2xy - y*=10.

20. Write down the equation of the pair of lines joining the points of
intersection of the straight line Ix+my =1 and the circle 22+ 2+ x—2p=0
to the origin. Hence find the equation of the straight line joining the points
of intersection, other than the origin, of the line pair 2x*-3)=0 and the
gircle a2+ P+ x-2y=0,

21. The line pair ¥+ 2xy + ¥*+ x+y— 2 = D meets the axesof x and y at the
points A,, A,: By, B, respectively. If O is the origin, obtain the values of
the products OA, . 04, and OB, . 0B, Deduce that the points A4,;, A,
By, B, are concyclic and find the coordinates of the centre of the circumcircle.

22, Find three values of A for which the equation
MR+ - 25+ (3x+ A Hx -2y - 5)=0
tepresents two straight lines.
23, Prove that the lines joining the origin to the points of intersection of

the chord 2x+y-4=0 and the circle xt+y®*~6x+y+4=0 are equally
inclined to the coordinate axes.

Angles between two straight lines, First consider a line pair through
the origin represeated by the equation
ax®+2hxy + byt =0,
Let the gradients of the lines be m,, m,.
Then the equations of the separate lines are y—mx=0, y—myx=0.
axt+ 2hxy + by = by —mx)(y — myx).
Comparing the coeflicients of x* and xy,

a=bmm,; 2h= —b{m,+my).
a 2h
Le, mmy=x,; kM= -
If 6 be an angle between the lines,
— MMy
tan 8=+ 1+ s
x -
But  (my—m) = (my g~ dmymy =20 ).

. _ ,24/(b*—2ab)
. tamB= iﬁ.—.
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Special cases. (1) When k*=ab, the lines are coincident;
(ii) When a-+b=0, the lines are perpendicular.

Now take the more gencral case of a line pair represented by the

equation
ax?+ 2hxy + by* +2gx + 2fy +¢=0,

with the condition A~=0 satisfied.
Suppose the separate lines have equations y=nnx+ ¢y, F=mgx+ cy,
where n,, m, are the gradients.

Then  ax®+2hxp+ byt +2gx+ 2fy + e = by —myx— e )(y — mgX — o)
Comparing coefficients,
a 2k
mlm,=5; my = ~%
2+/(h*—~ab)
a+th

Special cases, (i) When h*=ab, the lines are parailel or coincident;
(ii) When a+b=0, the lines are perpendicular.

As the terms ax?+2kxy+5by* are derived from the product
by —mx)(y—m;x), it follows that the line pair

ax?+2hkxy+ byt +2gx+2fy+¢=0
is parallel to the line pair through the origin,
ax®-+2hxy+by?=0.

As before tanb= +

Ex. 9. FQ isa chord of an ellipse which subtends a right angle af the centre C.
Prove that the perpendicular from the centre 1o the chord PQ is of constant
length.

Take the equation of the ellipse as ia + f =], so that the centre C is the

at b

origin.

Let the chord PQ have equation

Ix+my=1.
Then the equation of the line pair CP, CQ is
§+§=(lx+my}’
. 1 1
sfpp_ ) =

ic. X (I’ as) +2mxy + (m’ b‘) Q.

As this iz a perpendicular line pair

S
f’-;g+m B o

Le. 1.1
F+nﬁm?+b—g-



BISECTORS OF ANGLES 91
But the length of the perpendicular from C to PO is— l— and as

Aynd =£,+ é, —constant, the required result follows.

Equation of the bisectors of the angles between the lines
ax?+ 2hxy + by?=10.

If the gradients of the lines are m;, m,, then as before,

a, 2h
MMy =g m+my= -5

The equations of the bisectors of the angles between the lines
y—-mx=0, y—mx=0

y=mx | y-mgx
are JEms £ m)
ie. (L-+ mg®)(p )t = (1 + )y — myx)?

X3 A — m,®) — 2xp(my — ma)(1 — mymmg) — ¥~ me®) =0.
As m; # mg, or the original lines would be coincident, this equation
can be divided by m, —m,, giving
xt(m, + my) — 2xp(1= mymg) — yi(m, + my) =0
or bx*— (a— h)xy —hy®=0.

Ex. 10. Find the equation of the line pair whose angie bisectors have the
equation 2x2 - 5xy - 2% =0, and which passes through the point (2, - 1).

With the notation of the general result just obtained, it follows that the
required line pair has the equation

ax2+ 2hxy + by*=0,

where £=2 and ¢- b=5.

Also as the line pair passes through the point {2, - 1),

4a-4h+b=0.
Solving these cquations, a=12 b=-1% h=2.
So the required line pair has the equation
13x2+20xy - 122 = 0.

EXAMPLES 4¢

1. Find the acute angle between each of the line pairs:
(i) % -d4xy-y2=10; (i) 520+ 2xy - 42 =1
(iii) 6x* - Sxy+ )2 =0; (v} 3x® - xy— A+ Te+ I+ 2=0;
(v xE-Sxy+dy*+3x-4-=0.



7] MORE ADVANCED AMNALYTICAL GEOMETRY

2. Determine which of the following line pairs are perpendicular:
) 28— xp-22=0; (iiy * + dxy+ 2 = 0;
(i) 42 - Txy-4x2=0; (V) 2xt-xy- 32 +4x+4y=0;
() 33+ 8xp— 32 -Sx-Sy+2-=0.

3.+Find the equations of the bisectors of the angles between the line pairs:

(i) 3x¥+4xy+ )2 =0; (i) 52— llxy+2)%=0; (iii) 722+ 1lxy - 62 =0.

4. If the gradient of one of the lines 2x?+ ixy +3* = 0 is twice that of the
other, find the values of 2.

5. Prove that the equation 3x®- 8xy- 392+ x4+ Ty-2=0 represents a
perpendicular pair of lines and that the equation

xX+dxy+4y-4x-8y+3=0
represents a parallel pair of lines,

6. Find the perpendicular distance between the parallel lines

xE—dxp+dy?+4x -8y =10,

7. Show that the lines joining the origin to the points of intersection of
the straight line 2x - 3y + 4 = 0 and the curve x¥+ 4xy + 2%+ 12x + 4y = 0 are
at right angles.

8, Find the equation of the line pair, with point of intersection (I, 2),
which is parallel to the line pair x®- xy-2)*=

9. If the equation ax® - y% + 3x +y + b = 0 represents a perpendicular line
pair, find the values of g and 5.

10. A parallelogram is formed by drawing through the origin the line
pair parallel to the lines x*-32+4x+2y+3=0. Find the area of this
paralielogram.

11. The straight line x - 2y =4 meets the line pair

: X-xy-292-3x+9-4=0
at the points P and Q. If O is the origin, find the tangent of the acute angle
POQ.

12, Find the equation of the pair of lines intersecting at the point (2, 3)

which are perpendicular to the lines 2x®+ xy ~ )3 = 0,

13. Find the equation of the line pair which passes through the point
(1, ~ 1) and has angle bisectors with the equation 2x2— 3xy — 2y = 0.

14. The line /x -+ my =1 meets the ellipse ':: z: =1 at the points P and Q.
Find the condition that the lines joining P, Q to the origin are coincident and
interpret the result geometrically.

15. Prove that the equation of the pair of lines through the origin which
are perpendicular to the lines ax®+ 2hxy + 5y = 0 is b -~ 2hxy + @2 = 0.

16. Find the equation of the line pair which passes through the otigin and
is perpendicular to the lines 3x2 - xy - 2+ 7x+ 3y +2 =0,

17. The gradients of the lines ax®+ 2fixy + byd = 0 are in the ratio m: »,
prove that dmnl® = ab{m + n)t.



TANGENTS TO A CIRCLE 93

18. Find the equation of the bisectors of the angles between the lines
263 - Nxy+ 5% - x+23y - 10=0.

19. Find the condition that the lines joining the origin to the points of
intersection of the chord fx+my—1 and the circle x*+ )2+ 2gx+2fy+c=0
are at right angles.

20. Show that the equation of any line pair whose angle bisectors have
equation ax®+ 2ixy—ay®=0 is of the form (A-A)?+2axy+(h+Aap*=0,
where A is a parameter.

21. Show that all chords of the curve 3x®— y® — 2x + 4y = 0 which subtend
a right angle at the origin pass through the point (1, - 2).

22, If the equation (ax + by + 2gx + 2fy + ¢ = O representsa line pair, prove:
() af =bg; (i) the lines ar¢ parallel. Find the perpendicular distances of
the origin from the separate lines and hence determine the distance between
the lines.

23, Show that the condition that the line pairs a,x®+2hxy+by* =0,
a3+ 2hoxy + byy® — 0 have a line in common is that

(a,by — apD\ ) = 4(hy by — by Wiy, — hay).

24. Show that the equation of the lines drawn through the point (x;, ¥)

parallel to the lines ax®-+ 2hxy +by*=0is
alx — x, Y+ 2h(x — ) Xy — y) + By -y P =0,

25 The equation ax® + 2hxy + by® + 2gx + 2fy + ¢ = 0 represents two straight
lines; write down the transformed equation when the origin is moved to the
point (x, B). Deduce that if (x, p) is the point of intersection of the lines,

au+hB+g=0, ha+ b+ f=0.

26. Use the result of the previous example to determine the points of
intersection of the line pairs:

D) 22-3xy -2+ 2+ 1y - 12=0; (i) x?-3xy-)*+2x=-3p+1=0.

27, If the origin lies on one of the bisectors of the angles between the lines
221 Zhxy+ yi42gx + 2fy + ¢ = 0, prove that g? = f%

28. Find the equations of the diagonals of the parallelogram formed by
the pairs of paralle] lines

axd+2hxy+ byt + 2gx+ 2fy+¢=0, ax®+2hxy+by~=0.

Tangents to 2 circle from an external point.

Let the equation of the circle be
A
x2+y=4d, (xy4)

and let the given point A have
coordinates {x, ¥y}

Fia, 43.

Suppose the straight line joining 4 to a variable point B{<, p) cuts
the circle at Py, Ps.
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Now the coordinates of any point P on the line A8 can be expressed

as (M—}-x_l ?»[5"‘}'1)
a1l aFr /)’

where %: 1 is the ratio in which the point P divides 48,
P will lie on the circle if

4
() + ) -
ie. a2+ pr-g®) + 20(ux, + By —af) +(x 2 Hy i —a) =0
The roots 4y, A, of this equation correspond to the points P,, P,.
% The line AB is a tangent to the circle if &, =13,
ie if (axy + Byy — @) = (o + BA-a¥)(x, B+ 3,2 - &F).

This is the condition that the point («, B) lies ou one of the tanpents
from A to the circle and consequently the equation of the pair of
tangents is

(xx, +yy; —a’) = (x*+y*—af)(x,* + y," — a%).

More genecrally, if the circle has the equation

S=xf+2+2gx+ 2y +e=0,
and S =xx, +py +glx+x)+H v +y)+e,
Su=xt+yt 200+ 2+,

then the equation of the pair of tangents from (x, ;) to Sis
S:[2 = SS]J.

Ex, 11. Find the equations of the tangents which can be drawn from the
origin to the circle X2+ y*— 2x— 6y +5=0,
In this case, S=x*+3¥-2x-6y+3,
S;=x04+0-(x+0)-3y+0+5=-x-3y+5,
SHES.
.. The equation of the pair of tangents from (0, 0) te the circle is
{(-x-3y+5P=5(x"+)'- 2x - 6y +5)
ie. 22 -3xp-22-0,
or 2x+p=0; x=-2y=0.

Chord of contact of tangents from an external point to a circle. Let
the equation of the circle be

S=xt+)pt—ai=0,

and let the given point A have coordinates (x,, y,)
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Suppose the coordinates of L, M, the
points of contact of the tangents from 4 to
the citcle, are (x, By), (o3, Ba). (o
The equation of the tangent to the circle
at L is

xay+ypy—at=0,
and as A lies on this line,

Ilal+ylﬁl—a’=0 PR . (i) Fis, 44,
Similarly, as A lies on the tangent to the circle at M,
et ypPy—a®=0 . . . . . . (D

Equations (i) and (ii) show that both the points (=, By), (2, B) lie
on the line x;x+y,y—a?=0.

Hence the equation of the chord of contact LM is

xx, +yy,—ai=0.
More generally, if the equation of the circle is
S=xt+yi+2gx+2fy+e=0
and
Sy =xx s+ glxHx) -yt te,
then the equation of the chord of contact of tangents from (x,, y,) to
Sis
8, =0.

N.B. The chord of contact LM is spoken of as the polar of A with

respect to the circle; A is the pole of LM.

Ex. 12. Tangenis are drawr from the points (0, 2), (1, 3), (2, 4) 1o the circle
X2+ 39— 4x+2y=0. Prove that the three chords of contact are concurrent.

Using the above result, the chords of contact are
2y—-2x+y+2=0; iPe, -2x+Iy+2=0;
x+3=-2x+D+y+3=0; ie —-x+4y+l =0
Zx+d4y-2x+ 2D+ y+4=0; ie. 5y =0,
These three lines are concurrent in the point (2, 0).

EXAMPLES 44

1. In each of the following cases find the equation of the pair of tangents
which can be drawn from the given point to the given circle:

) (4,3, a4 +2-2=0; G (—3,0), 24+ 30=1;
(i} (—1,2), 23 +2%-1=0; (iv) (0,0), x2+ 8- Sx4 2y +2= O
W 0. 1), xt+ )2+ ay=0; i) (-2, 1), 23+ ) - dx+y=0;

M) (=3, -4, 32+ -4x-2y-5=0.
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2. Find: (i) the equation of each of the tangents which can be drawn
from the origin to the circle x¥+ »® - 4x— 4y +4 = 0; (ii) the equation of the
chord of contact of these tangents.

3. Find the equation of the pair of tangents from. the point (2, 4) to the
circle x*+ y#+ x — 3y = 0 and determine the acute angle between the tangents.

4, Prove that the tangents to the circle x2+ y2+ 2x — 4y + 3=0 from the
point (1, 2) are at right angles to each other.

5. Int each of the following cases, find the eqnation of the chord of contact
of tangents drawn from the given peint to the given circle:

5, D, 2+ 2-2=0; @) (= 1,2), X2+ y3—4:
(i} (-3, -4), 222+ 2yt -3=0; (V) (0, 0), x*+ y2+dp+ 2=0:
ML D, 3B+ 2x -6y + 8=0; VD) (=2, - 4), X+ = 6+ 1 =0.

6. By first obtaining the equation of the chord of contact, find the
coordinates of the points of contact of tangents drawn from the point (1, 2)
to the circle x*+3? - 4x+ 6y =0,

7. Tangents are drawn from the points (- 1, 0), (0, - 1), (1, - 2) to the
circle x®+ y3 — 2x - 2y = 0, show that the chords of contact are concurrent.

8. The cherd of contact of tangents from the point P to the circle
x¥+ 2+ 4x — 2y — 2 = O passes through the point (- 1, 0), find the locus of P,

9, Verify that the chord of contact of the tangents drawn from the point
P(h, k) to the circle 2+ 32+ 2gx + 2fy + ¢ = O is perpendicular to the straight
line joining the centre of the circle to P.

10. If the chord of contact of tangents from the point (g, £ to the circle
x2+ 334 20+ 2fy + ¢ = O passes through the origin, prove that g2+ f2+ ¢ =0,

11, Show that, for all values of ¢, the chord of contact of tangents from the
point (2¢,71-4) to the circle x®+)®-4x-6y+1=0 passes through the
point (3, 1).

12. Find the condition that the tangents from the point (4, &) to the circle
x2+ y®+ 2px + 2/ + ¢ = 0 are at right angles.

13. Find the point of intersection of the tangents drawn to the circle
x®+ y% = 4 at the extremities of the chord y—x~1=0.

14. Tangents are drawn from the point (2, -~ 2) to the circle x2+33=2.
Find: (i) the equation of the chord of contact; (ii) the equation of the circle
on this chord as diameter,

15. Prove that the tangents to the circle x¥+ )% = o? at the extremities of
the chord Ix-+ my =1 intersect at the point {(a¥, aim),

16. By using the properties of similar triangles, determine the point of
intersection of the exterior common tangents of the two circles (x — 2P+ y* =1,
(x-4"+)*=4, Hence obtain the equation of the pair of extetior common
tangents.
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17. Find the point of intersection of the interior commeon tangents of the
two circles (x+1¥+32 =1, (x~ 43+ y*=4 and hence find the equations of
these tangents,

18. Find the equation of each of the exterfor common tangents of the two
circles x¥4+ 32~ 3x~4y+4=0, x2+¥ - 12x— 163+ 64 =0.

MISCELLANEQUS EXAMPLES

1. Find the value of a if the three lines 3x+y-2=0, ax+2y-3=0,
2x - y- 3=0 are concurrent,

2. Show that the points (- 2, 3), (1, 9), (- 5, - 3) are collinear.

3. Theequations of the sides of atriangleare 8x — 5y — 1=0,7Tx - 4y +1=0,
x-y+1=0; find: (i) the coordinates of the centroid; (ii} the arca of the
triangle.

4. Two equal circles of radius two units have centres at the points (0, 1),
(3, 4); find the equations of the exterior common tangents.

8. Show that the variable line (» — 2)x + (2% — 3}y — A+ 1 = 0 passes through
a fixed point and find the point.

6. Find the condition that the lines ax-+hy+g=0, Ax+by+f=0,
gx+fy+c=0 are concurrent and find the coordinates of the common point.

7. Find the values of X for which the equation 2x®+9xy +4)y* =ax +2y
represents a fine pair. .

8. Write down the equation of the lines joining the ends of the chord
x -2y =2 of the circle ¥+ 3® =1 to the origin and determine the acute angle
between the lines.

9, The points (x;, ¥}, {¥s ¥} 2re opposite vertices of a square, find the
coordinates of the other vertices.

10, Find the equation of the line pair intersecting in the point { - 2, 1) and
making angles of 45° with the line 3x+y+5=0.

11. Show that the area of the triangle with vertices (a3, 2at,), (arsd, 2ary),
(atyty, at, +1y) is numerically equal to 3a*(r, — f.)°

12. Show that the lines jeining the origin to the points of intersection of
the line 2x - 3+ 4 = O with the curve x® + 4xy + 2y*+12x+4y = 0 are at right
angles.

13, If the equation ax®+ 3xy-2y®-5x+5y+¢=0 represents a per-
pendicular lirte pair, find the values of 2 and ¢.

14. Find the circumcentre of the triangle with sides x+3y=0,
2x+y—10=0, x -7y +10=0.

18, A4, B are two points on the line x - y+ 1 = 0 at distance 5 units from the
origin O; find the area of triangle OAB.

16. Show that the lines a,x + &y + ¢, = 0, ayx -+ by + ¢,= 0 meet the axes in
four concyclic points if gy, — &by = 0.  In this case prove that the equation
of the circle passing through the points s

aa(x2+ p) + (o + apey)x + (Biog + byoy Yy + 2405 =0,
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17. Write down the eguation of the pair of tangents from the point (3, - 2)
to the circle »% + y¥ =3 and find the acute angle between them.

18, Prove that the perpendiculars from the points (- 8, 10), (1, 2), (1, 11)
tothelinesy - 3x+5=0,2y—~x =0, x + ¥ — 15 = Drespectively are concurrent,
and show that the same property is true of perpendiculars drawn from the
vertices of the second triangle to the sides of that determined by the given
points.

19. Find the equation of the chord of contact of tangents drawn from
(-1, -2} to the circle x®+)*+4x+10y+24=0 and determine the
coordinates of the points of contact.

20. Find the acute angle between the ling pair x®+4xy+»*=0 and by
factorisation prove that the equation x%+ 3a%p - 3x3% — 3® = 0 represents three
lines through the origin equally inclined to each other,

21. Find the values of 3, ¢ for which the equation _
(2x+y-x+2y-5)+Mx+ 2y -5 x+y-6) +u(x+y~6)2x+y-4) =0,
represents a circle. Deduce that the equation of the circumcircle of the
triangle formed by the lines x+y-6=0, 2x+y-4=0, x+2¥y-5=0 is

a4y 17x-19y+50=0.

22. Show that the circle drawn on the common chord of the curve
3x%+ 5xy - 3%+ 2x+ 3= 0 and the line 3x—2y-1=0 as diameter passes
through the origin.

23. Prove that the vertices of the quadrilateral whose sides are given by
the equations rx + myy + 1y =0; r=1,2, 3, 4, are concyclic if

(it — Ly ioly + migmy) + (army = L)ty + niymig) = O.

24, Find the point of intersection of the tangents drawn to the cirgle

x84 32— 2x+ 4y+2=0 at the ends of the chord 2x -4y =7.

25. Show that the two straight lines y® — 2xy sec 0+ x® = 0 make an angle?
with one anpther.

26. Prove that the equation of the chord of the circle
3+ 4+ 2px 42+ e=0
whose mid-point is (x", ") Is (x' + g¥x - x )+ (¥ + F)y - y1=0.
27. Show that the bisectors of the angles of each of the line pairs
axd 4+ 2hxy + 2 =0, ax®+2hxy + b+ (22 + =0 coincide. Deduce that

the angle between one line of the first pair and one line of the second is equal
to the angle between the other two lines.

28. The distance of the point (e, B) from each of two straight lines passing
through the origin is A; prove the equation of the pair of lines is
(xp - po)® =222 1 »%),

29, A chord of the curve ax®+ 52 =1 subtends a right angle at the origin,
prove that it touches a fixed circle, centre the origin.
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30, Find the equation of the pair of lines through the origin which are
at right angles to the lines ax®+ 2hxy + by® = 0. Deduce that the line pairs
ax®+ 2y + by2 + 2gx + 2fy + ¢ = 0, bx® ~ 2hxy + ay® = O meet in four concyclic
points and find the coordinates of the centre of the circle which passes through
these points,

3L. By expressing in polar coordinates, or otherwise, prove that the
equation x(x% - 3p%) = mp(3% - 3x%) represents three straight lines through the
origin making equal angles with one another.

32. Prove that the lines joining the origin to the points of intersection
other than the origin of the two curves @x®+2hxy+by?+25x=0,
apx® + 2igxy + bgy* + 2gox = 0 are perpendicular if go(a, + by) =gy (az + ba).

33. Prove that the area of the triangle formed by the lines

axd+ 2hxy+b2—=0 and Ix+my=1
is /(- ab){(arm® - 2him + bi%).

34, Find the equation of the circumcircle of the triangle formed by the
lines 2x%+3xy— =0, x+y=1.

3%. Show that the product of the perpendiculars from the point (, £) to
the lines ax3-+ 2y + by2 =0 is equal to (ao? + 2haP + bB¥ v{(a - D+ 4h%}.

36, The line pair y*— m2x® =0 intersects the curve ax®+ 5”21 in the
points A, B, C, D. Show that the equation ax®+ by* - 1 +3(2 - mxH) =0
represents a curve passing through A4, B, C, D and deduce that the equation
of the circle through these four points is

(1 +m®ax®+ b2 - 1)+ (- B2 - mExT) = 0.

27, If the point (—~1, — 1) lies on one of the lines whose equation is
ax®+ 2hxy+ 52 + 2gx+ 2fy+ g+ f=0, prove that it alsc lies on the other,

38, Show that the condition that two of the lines represented by the
equation ax®+3bxly+3ex)2+d)*=0 may be at right angles is that
a2+ 3ac+ 3bd+d* =0, :

39, Show that all chords of the curve 3x2 - 32 - 2x + 4y = 0 which subtend
a right angle at the origin pass through a fixed point.

40. If

Si=32+ 2y - P+ 5x+y+2=0, S;=4xi+ Sxy-6P2~3x+5y-1=0,
show that the equations 5, =0, $,= 0 represent line pairs. Interpret the
equation §y+3S5;=0 and show that » can be chosen so that the equation

represents a circle. Deduce that the line pairs § = 8;=0 intersect in
concyclic points and find the equation of the circumscribing circle.
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SYSTEMS OF CIRCLES

Radical axis of two circles

Definitions. The power of @ poimt P with respect to a circle S,
centre A4, radius g, is defined as the expression 4P2—a?.

If the equation of the circle § is x*-+3*+2gx+2fv+c~0 and P is
the point (=, 8), then

the power of P=AP2—gt,
=(a+gP+{P+f¥ - (g +/*-¢),
=af+ @+ 2gx+2fB+e. . . . . . (i)

Le. to obtain the power of a point with respect to a circle whose equation
fix, ¥)=0 is expressed with unity coefficients of x3 and 3, simply
substitute the coordinates of the point into the expression f(x, y).

If P Lies outside the circle, the expression (i) will be positive and equal
to the square of the tangent from P to the circle,

If P lies within the circle, the expression (i) will be negative.

Ex. 1. Find the power of the point {— 1, 2) with respect to the circle
2+ 22+ 3x+ y - 2=0 and state whether the point lies outside or inside the
circle.

Write the equation of the circle in the form
X+pir3xrdy-1=0,
Then the power of the point =(- 1+ (2*+ 3(- H+ 4D -1
=34

Ag the power is positive, the peint lies outside the circle.

The radical axis of two circles is defined as the locus of a point P
which moves such that its powers with respect to the circles are equal.,
For all points of the locus outside the circles this is equivalent to
defining the radical axis as the locus of a point from which the tangents
to the two circles are equal in length.

The equation of the radical axis of two circles. Let the equations of
the circles S,, §; be respectively
xR 2+ 2y +e=0, x4y 42g.x+2f,y+e,=0,
and let the point P have coordinates (e, p).
100



RADICAL AXIS 10
Then P lies on the radical axis of the circles if
ad4 G4 2p, 0+ 2 B+ oy = o+ PR 2gpa+ 2B + 0y,
Le. if 2aigy — )+ 2B(fi —fo) F e~ € =0.
Hence the equation of the locus of P, that is of the radical axis of the

cireles, is
(g, — L) T 2M(f1— S+ ey — =0,
This is a straight line perpendicular to the line of centres of the circles.
N.B. If the equations of the circles are represented as §5,=0, 5,=0,

 then the radical axis is S,— Ss=0, it being assumed that the coefficients
of x® and y* in S, and S, are unity.

Special cases
(i) If the two circles intersect in real points X, Y, then the equation
&y —S,=0is the equation of the common chord X7.

Le. the radical axis of two intersecting circles is the common chord of
the circles.

(ii) If the two circles touch at a point X, then the equation 5, ~5,=0
is the equation of the common tangent at X,

Le. the radical axis of two circles which touch each other is the tangent
at the common point.

Geometrical construction of the radical axis of two non-intersecting
circles. Draw any circle Z,; to cut the given circles at 4,, By; A,, B,
(Fig. 45).

Let A; By, A.B; intersect at F,.

Fia. 45.

Then, as P4, .P,B,=F,A,.P\B,, intersecting chords of X, it
follows that the square of the tangents from P, to the circles S,, 5, are
equal, and consequently P, lies on the radical axis.

By drawing a second circle Z,, a second point P, is obtained and
PP, is the radical axis.
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Radical centre of three circles. The radical axes of three circles
taken in pairs are concurrent in a point called the radical centre, except
in the case where the centres of the circles are collinear, in which case
the radical axes are parallel.

For representing the circles by the equations

Sl=0! Ss=0, S.1=09

the radical axis of the circles S,, S, is

Sz - Ss = 0 . - . - . . (i.i.)
and the radical axis of the circles S, S, is
Sg—-8&=0 . . . . . . (i

The coordinates of the common point R of these lines will satisfy
any equation derived from (ii) and (iii), i.e. the point R lies on the line
$;—8;=0, adding (i) and (iii).

But S;—S5,=0 is the radical axis of 5, and S,, and hence the three
radical axes of the circles taken in pairs are concurrent in R, the radical
centre.,

Ex. 2. Find the coordinates of the radical centre of the three circles
X4y=2 Py —4x+2y+1=0, 232+ 22+ Sx—6y+2=0,
Writing the equation of the third circle in the form
2+ ptrdx-dy+1=0,
and referring to the circles as §y, 5,5, Sa, then the radical axes of &), S, and
&y, Sy are respectively
P -2-(F ) -4+ 2y+1)=0

and x4y -2-(f 4 Sx -3y + 1)=0.
ie. 4x-2y-3=0,
-2x+3y-3=0.

Solving these equations x =15 y—33.
.. the radical centre of the circles is the point (3% 33)-

Simplified form for the equations of fwo given circles, Take the line
of centres of the circles as the x-axis and their radical axis as the y-axis,

As the ordinates of the centres of the circles will be zero, the
equations can be taken as

x2+yi+2gx+e=0 and x*+)y%+2¢°x+c' =0,
The radical axis of these circles has the equation
2x(g=g)+c—c'=0.
But the radical axis is the axis of y, ie. x=0.

.. Ignoring the special case, g=g', when the circles are concentric,
it follows that

r

c=c,
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Consequently, the equations of the two circles can be taken as
x+ 324 2gx+e=0, x3+3*+2g'x+c=0.

These simplified equations should be used in the analytical treatment
of problems involving two circles as is illustrated in the proof of the
following proposition.

The difference of the powers of a point with respect to two given circles
is proportional to the distance of the point from the radical axis of the
circles.

The equations of the given circles can be taken as

Sy =x2+)2+2gx +¢=0,
Sa=x2+ 32+ 2g,x +¢=0.
Let P be the point (o, B).
Then the power of P w.r.t. §;= o+ 82+2ga+¢
and the power of P w.rt, S;=o+p2+2ga+c.
~. Difference in powers =2u(g, — ga).
But « is the distance of P from the radical axis, x=0, and (g,—g,)

is constant; hence the difference in the powers of P is proportional to
the distance of P from the radical axis.

Ex. 3. PT is a tangent from a point P on a given circle ), cenire 4, to a
second circle S, centre B, If PM is the perpendicular from P to the radical
axis, prove that PT*=2PM . AB.

Take the equations of the circles as
Si=x24+ 2+ g te=0; S;=x +10+2gx+c=0.
Let P be the point (o, B).
Then PT3=od+ PP+ 2g,04c,
But as P lies on the circle 5,
O=0o+ i+ 2g, 0+ 0
Hence PT?=2a(g,— g,)=2PM . AB.

EXAMPLES 5a

1. Prove from the definition that if the power of a point with respect to
a circle is positive, zero or negative then the point is outside, on or inside
the circle respectively.

2. Find the powers of the point (I, —2) with respect to the following
circles and in each case give the position of the point in relation to the circle:

@) 2+ +8x—-y+6=0; (i) x2+y -dx+2y=0;
Giii) 42+ -6x +2y -3 =0.

3. Prove that the point {—2, 1) lies inside the citcle x*+12+4x—-1=0

and outside the circle 2x3+2)y% - 2x - 3y =1}
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4. Find the equations of the radical axes of the following pairs of circles:
@ APty -6x+4=0, (ii) Brpt=4q,
XAy -2r+y-6=0; E+2P - 4x=3;
(i) x®+y%-2x+y-6=0,
A+ +x-6y—4=10.
5. What is the radical axis of two equal non-intersecting circles with
centres A, 87

6. Find the equation of the radical axis of the circles x?+3%=1,
x%4y%- 6x-4y+9=0. Drawan accurate diagram showing the circles and
their radical axis.

7. Draw two non-equal, non-intersecting circles and obtain their radical
axis by a geometrical method.

8. Prove that the circles (x + 12+ 3% =4, (x - 3+ (¥ - 3)¥ =9 touch each
other externally and find the equation of their radical axis. Show the circles
and the radical axis on a diagram.

9. Find the coordinates of the radical centre of the circles
B4+ 4x+dped=0, P+ -4y+3=0, xP+)y*-8x-2y-16=0.

10. Three circles are such that each intersects the other two in real points.
Prove that the three common chords are concurrent,

11, Show that the radical axis of the circles x2+)%+ 20 x+e=0,
x%+y2+ Dyx + c=0 is independent of the values of the parameters A, %,

12. Prove that the radical axis of two unequal circles is further from the
centre of the larger circle than from the centre of the smaller circle.

13. If P is a point on the radical axis of (wo circles, centres A, B, radii o, b,
and N is the foot of the perpendicular from P to AB, prove that
ANZ- BN?=g®— b* and deduce that AN - BN =(a%— b%)/AB.

14. A point # moves such that its power with respect to a circle 5, is twice
its power with respect to a second circle S,. Prove that the locus of Pis a
circle whose centre lies on the line joining the centres of .$, and $,.

15. Prove that the system of circles represented by the equation
x%+ 32+ D+ ¢ = 0, where X is a parameter and ¢ a constant, is such that the
radical axis of every pair is the same straight line,

16. Show that the circle T will bisect the circumference of the circle § if
the centre of the latter circle lies on the common chord, Deduce the
condition that the circle x¥+3%+2px+2f+e=0 should bisect the
circumference of the circle x2+ 3 - 4=0.

17. Prove that the locus of a point which moves such that the difference
of the squares of the tangents from it to two given circles is constant is a
straight line,

.18, Find the condition that the circle x2 + y2 — 2ax - 28y + £ = 0 should cut
the circle x¥+ 33— 2a’x — 28"y + ¢" =0 at the ends of a diameter of the latter
circle,
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19. P is any point on the radical axis of two non-intersecting circles §;, S;.
Prove that the chords of contact of the tangents drawn from P to the circles
intersect on the radical axis.

20. A variable circle ¥ cuts two given circles Sy, Sy at P, @ Pa (s
respectively, Prove that the locus of the point of intersection of P, Q,, P, 0,
is a fixed straight line.

21. Two fixed circles have their centres at 4, B; a number of circles S are
drawn so that each circle 5 bisects the circumference of each of the fixed
circles. Prove that the centres of the circles .S lie on a fixed straight line
perpendicular to AB.

22. Triangle ABC is obtuse-angled at A. The altitudes 4D, BE, CF
intersect st the orthocentre . Prove that HE. HB —HF . HC, and hence
show that H lies on the radical axis of the circles drawn on AB and AC as
diameters.

23, Prove that the radical axis of two circles bisects the common tangents
of the circles. In triangle A BC, prove that the radical axis of the incircle and
the escribed circle opposite 4 passes through the mid-point of BC.

24. A variable circle passes through two fixed points A, B and cuts a fixed
circle at P, @. Prove that PQ) intersects AB at a fixed point.
Coaxal circles

A system of circles which is such that the radical axis of any pair is

the same as that of any other pair is called a coaxal system.
From the definition it follows that:

(i) the centres of the circles are collinear, as the line joining each
pair of centres is perpendicular to the common radical axis;

(i) a coaxal system is determined by any two of its member circles.

Suppose two circles of a coaxal system are

Si=xt+3124 2 x+ A v+ =0;  Sp=x+)2+2gx+ 2,y +e,=0.

Consider the equation $;+S,;=0, where X is a parameter,

Apart from the value 2= —1, when it represents the radical axis of
the two given circles, the equation represents a system of circles.

Take any two circles of the system
S +18,=0;  §,+2,5,=0.
Then the radical axis of these two circles is
SitMSy  Sit2eSy_
Tra, 1+,
carc being taken to make the coefficients of x* and y* unity before
subtraction.
Simplifying, Syre =)= Syl —2)=0
ie. S —8;=0 as 33N

0,
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Consequently, the radical axis of any pair of circles in the given
system is the same strajght line, the radical axis of the original pair.

Hence the eguation S,+15,=0, 3= —~1, gives the coaxal system
deternined by the two circles $;=0, S,=0.

Replacing the parameter 3 by p, where 2= — —t—, the equation

14+u
S5; +25, =0, becomes
Sy + (S~ S =0.
But L=5§8,-5,=0,
is the equation of the radical axis of the system and so the equation of

a coaxal sysiem can be expressed in terms aof the equations of one of the
circles and the common radical axis in the form

Sy +uL=0.
As the coefficients of x? and »* are unity, this is often the more con-
venient form for the equation of a coaxal system,

N.B. If the circles §,, S, intersect in real poinis, then the equation
81428, =0, represents the system of circles through the common points
and consequently, in this case, this is the coaxal system determined by
the iwo circles,

Ex. 4. Write down the eguation of the coaxal system determined by the
circles x%+ )2 =4, x®+ 2 6x + 4y + 10=0 and find the equation of the circle
of the system which passes through the origin.

The equation of the coaxal system is

132 6r+4y+ 10+ Mx3+ )2 -4) =0,
This equation is satisfied by the point (0, 0) if
10-4=0; r=%
.. The equation of the circle of the system which passes through the
origin is
Axt+3? - 6x+ 4y + 10+ 503+ 1 -4) = 0
B+~ 12x +8y=0.

Ex, 5. Two circles of a coaxal system have equations x2+ ¥ - x+3y+1=10,
2+ 2+x-2y+1=0. Find: (i) the equation of the radical axis; (i) the
equations of the twe circles of the system which touch the x-axis.

@) Radical axis L=5,-5,=0
ie. L=5y-2x=10.

(i) The equation of any circle of the coaxal system can be written

x4 32— x4+ 3y+1+p(5y-2x) =0,

This circle meets the x-axis, where

o+ D+1=0.
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Hence this circle touches the x-axis if
Qu+lp=4 p=P -3

. The equations of the circles of the coaxal system which touch the x-axis
are

24+ P -x+Ip+ D+ 5y-2=0; 2P+ -x+3y+1)-3(5y-2x)=0.
Le. 202+ ) - Ax+ 11y +2=0; 22 +yH+4x-99+2=0.

Simplified form of the equation of a coaxal system of circles. Let two
circles of the system have equations

S =3+ 42+ 2y +e=0;  Sy=x3+p+ 2gx+ 2y + e, =0

Take the commeon radical axis as the y-axis.
Then the equation
2(gy - g)x+ A fi—foy + =6 =0,
must reduce to x=0.
S A=fs o=
Consequently, when the common radical axis is taken as the y-axis
the equation of any circle of the coaxal system reduces to
X1+ y24-2ex+ 2y + =0,

where f and ¢ are constant in value for all circles.

The fact that £ is constant shows that the centres of the circles all lie
on a straight line perpendicular to the radical axis. The equation is
farther reduced by taking this line of centres as the x-axis; it becomes

x4y 4 2gx+c=0.

To stress the fact that ¢ is constant for all the circles of the system
and only g varies, the equation is usuaily written
¥*+y+Dx+c=0,
where A is a parameter.
Hence the equation of a system of coaxal circles can be expressed in
the form x3+y2+2ax+ =0, where % is a parameter and ¢ a constant.

Conversely, the equation x2+ y2- 22x +¢=0, where  is a parameter
and ¢ a constant, can be shown to represent a system of coaxal circles.

For take any pair of circles with 2=23y, A,.

The radical axis of this pair is

2x(h —2) =0,

ie. x=0.

So the radical axis of each pair is the same and the system is
coaxal.
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Ex. 6. Show that, in general, two circles of a coaxal system will touch a
given straight line.
Take the equation of the coaxal system as
2+ +Dx+e=0
and let the given line be k+my+n=0.
The circle touches the ITine if the Jength of the perpendicular from its
centre (-2, 0) to the line is equal to its radius /(2 -¢),
-H+n
Y 3
or, squaring and simplifying, m®3?+ 2n: - (% + P+ mfc)=0.
Apart from the case m =0, this is a quadratic equation, and consequently,
in general, there are two circles of the system touching a given line.

ie. if

Types of coaxal systems. Every circle of the coaxal system
xt+yi+Dx+e=0
cuts the radical axis, x=0, where
yi+e=0.

The following three cases arise according as ¢ is less than, greater
than, or equal to zero.

Case (i). Suppose c is negative and equal to —k®.  Then every circle
of the system cuts the radical axis in the same two points {0, Lk
Consequently, the system consists of a series of circles passing through
two fixed points A4, B (Fig. 46).

Y

o]}

FiG, 46, FiG. 47,

As the equation can be written in the form
{x-+32+ 2 =22+ k3,
it follows that the least circle of the systemn has its centre at the origin
and its radius equal to X.

Case (ii), Suppose c is positive and equal to k% Then as y&+k2=0
has no real solutions, ne circle of the system cuts the radical axis
(Fig. 47).
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Writing the equation in the form,
(x+rR+pr=n2~j2
it follows that the radius equals 4/(x®—k?).

Hence * cannot lie between —% and +k, and as » approaches either
of these values the radius tends to zero.

Consequently, there are two point circles in the system, circles with
zero radius, at the points (L£k,0), These points L;, L, are called
limiting points; it will be noted that they are reflection points in the
radical axis.

N.B. In case (i), where ¢<0, the circles meet in real points
{0, -1:+/ —c) and the limiting points (£+/¢, 0) are imaginary.

In case (i), where ¢>0, the circles
meel in imaginary points (0, v/ —¢)
and the limiting points (d:~/c, 0) are
real,

Case (iii}. Suppose c=1. Clearly
in this case the common points and
the limiting points all coincide at the
origin.

The system consists of a series of
circles touching each other at the origin.
The least circle of the system is a point circle at the origin (Fig. 48).

Limiting points. As defined above, the limiting points of a coaxal
system are the centres of the circles of zero radius in the system., They
will be real when the circles of the system are non-intersecting. It is
important to remember that the limiting points are point circles in the
system; for example, if the point (3, —4) is a limiting point then the
circle

(x—32+(y+42=0,
is a member of the coaxal system.

Ex. 7. A coaxal system has limiting points {-1,2), (0, 3). Find: () the
equation of the radical axis; (ii) the equafion of any circle of the system.
(i} The equations of the point circles are
Si=x+1E+ (-2 =0; S=x2+(p-N=0,
. The radical axis L= 5, .5,=0, has the equation
X+y-2=0.
This line is, of course, the perpendicular bisector of the line joining the
limiting points.
(i) The equation of any circle of the system can be expressed in either of
the forms
§;+38:;=0 or S+uL=0.
ILe. (x+1R4+0-D+u:x®+(y-3% =0 or
XA 1P+ (=D rpx+y-D=0,
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Ex. 8. Jf one circle of a coaxal system, of which the origin is one limiting
point, is x®+)°+4x+2y+4=0, find: ({) the equation of the radical axis;
(i) the coordinates of the second limiting point; (iii) the equation of the second
coaxal system formed by circles passing through the limiting points of the
original system.

_{i} The equation of the point circle at the origin is
S =x*+yt=0,

Also Sp=xt+)yt+dx+ 2y +4=0.
.. The equation of the radical axis is

4x+2y+4=0; ie Zx+y+2=0.
(ii) Any circle of the coaxal system has the equation

2242+ y+2)=0.

The radius of this circle is 4/ ($1® - 212} and its centre is ( ~ 2, —%u).
So for the point circles, $p2-2u=0; ie u=0%
The value .=0, gives the origin.
The value u=%» gives (- ¥ - $) as the second limiting point.

(i) If ¥ =0is the equation of one ¢ircle passing through the limiting points
and M =0 is the equation of the line joining these points, then the equation
of the second coaxal system is

E+iM=0,
where A is a parameter.

The centre of & must be on the radical axis of the original system. Take
as centre the peint (0, —2) where the radical axis meets the y-axis; as X
passes through the origin its radius is 2.

So T=xt+(p+ 02 -4=0; ie x2+p2+4y=0,
and M=x-2y=0
Hence the equation of the second coaxal system is
x4yl dy+ W -2))=0.

To find the limiting points of a given coaxal system geometrically.
We can assume that the radical axis has been given or has been con-
structed. Take any point P on the radical
axis and construct a tangent T to one of the
circles S of the system.

Now construct the circle, centre P,
radius PT; this will cut the line of cenires
at the limiting points L,, L,.

The proof is immediate as PL,, PL, arc
the tangents from a peint P on the radical
axis to the point circles L;, L,, and each of
these tangents is equal to PT, the tangent to S. Fic. 49.
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Ex. 9. Show how to construct the two circles of a given non-intersecting
conxal system which louch a given line.

Suppose the given line meets the radical axis at P (Fig. 50). With centre P,
radius PL,, construct a circle to cut the given line at X;, X;. Then X, X,
are the points of contact of the required circles. The centres of these circles
C,, C, are obtained by drawing perpendiculars at X, X, to the given line.

X4
|54 X
!
1 | S
G L\Ei_/-z c2
FrG. 50.

The proof follows from the fact that the length of the tangents from P to
all the circles of the system is egual to PL; or PL,.

EXAMPLES 5b

1. Write down two alternative forms for the equation of a circle of the
coaxal system determined by each of the following pairs of circles:
() x®+y2 =1, X2+ )5 -2x =0
() x+y2=2y; +)y*-3x-p+1=0.
(i) 2(x2+)) - x~2=0; 22+yt-ay-2=0;
v} 224+ -5x+2p-3=0; 322+ 32-2p-6=0,
2. Find the equation of the circle of the coaxal system determined by the
circles x% + 3@ =4, x2+ 32— 6x + 2y + 5 = ( which passes through the point (0, 3).
3. The radical axis of a coaxal system is L = 0, and one circle of the system
is $=0; write down the equation of any circle of the system in each of the
following cases:
D L=x+y S=xt+) - 6x-2y+2;
(i L=x-2y+1, S=x+y*-2;
(i) L=2x-p=3, S=20+ yN) - dx+ 1;
(iv) L=x, S=ax®+a*+2gx+ 2+
4. The radical axis of a coaxral system is x+ 1 =0 and one circle of the
system is x®+3y*-5x+2=0. Find the equations of the two circles of the
system which have a radius of 1.
5. Make rough sketches of the coaxal systems represented by the
equations:
@) 2+ eDx-1=0; (i) 22+ +Dx+1=0; (i) x*+)y*+ 2x=0.
6. Prove that through any point there passes one, and only one, circle of
a given coaxal system.
7. Prove that the circles x®+p2-6x-16=0, a%+y8-3y-19=0,
2:3+ 2)2— 18x+ 3y — 29 =0 are coaxal and state the equation of the common
radical axis.
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8. Find the coordinates of the limiting points of each of the following
systems of coaxal circles:
@) 2+ 22+ +4=0; (i ¥+ +ap+9=0; @) x¥¥+)2+Mx-2D=0;

(v) A2+ -2x+ |1+ Bax=0; W 2+ x4+ y-D=10;

i) 2+ - 10x + 9+ A2+ 321 Bx+ ) = 0.

9. Prove that (1, 2) is one of the limiting points of the coaxal system
x — 1%+ (-2 +2(x%+ 1%+ 6x + 5) = 0 and find the other one.

10. Find the eguation of the radical axis and the coordinates of the

limiting points of the coaxal system determined by the circles
X424+ 10x-4y-5=0, 2x*+ 22+ 12x-6y~3 0.

11. Write down the general equation of the system of coaxal circles having
each of the following pairs of points as limiting points: (i) {0, 0), (2, 1);
(i) (0, 0), (0, - 4); (iii) (1, 1), {2, - 1); (i) (2, ~3), 4,0

12. Draw two unegnal non-intersccting circles and find by geometrical
construction: (i) the radical axis; (it) the limiting points of the system
determined by the two circles.

13. The limiting points of a coaxal system are (-2, 1), (3, 3). Find:
(i) the equation of the radical axis; (ii) the equation of the circle of the
system which passes through the origin.

14, The limiting points of 2 coaxal system are (1, — 1), (3, 0). Construct,
on squared paper, the circles of the system which touch the line y = 2. -

15, Prove that the radical axes of a given circie and each circle of a given
coaxal systerm are concurrent.

16. The circle x2+3? + 4x— 6y+ 3 = 0 is one of a coaxal system having as
radical axis the line 2x - 4p+1-=0. Find the coordinaies of the limiting
points of the system showing that one lies on the line x+3y—-2-=0. Also
find the equation of the other circle of the system which touches this line.

17. Find the equation of the circle which has as diameter the commeon
chord of the circles x2+)2~2x+2y~3=0, ¥+ )2~ x+Ty-1=0.

18. Find the equation of the circle which has for a diameter the chord cut
off on the tine x— y+ 2 = 0 by the circle x*+32=4,

19. If the line of centres of a coaxal system meets the radical axs at & and
ay is the radius of a circle of the system with centre Ay, prove that 04, — a,*
is constant.

20, Two circles, centres A, B, have radii @, #. Prove that the locus of the
centre of a circle which bisects the circumferences of the two given cireles ig
the radical axis of circles, centres A, B, radii b, a respectively.

21, Given the limiting points of a coaxal system, show how to construct
the circle of the system which passes through a given point.

22. Pisa point on the radical axisef the coaxal system x? + 2+ Dx + &% = Q.
Show that the chords of contact of tangents from P to the circles of the system
are concurrent,

23. Show that the equation of the system of coaxal circles with limiting
points (x;, ), (xa, ¥a) can be expressed in either of the forms:

(D) (x=-x)f + (- P+ M- 3P+ (- 3)*} =0: or
() (x—xp+ (- 2+ {(x - X))@+ xy + 30+ (0 - ¥2r + 1t ¥} =0,
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24. If the point (2, 1) is one limiting point of a coaxal system containing
the circle x*+y¥+8x-6y-3=0, find: (i) the coordinates of the other
limiting point, and (i) the equations of the circles of the system with radius
2 units,

25. Prove that the equation of the coaxal system of circles passing through
the points (x, 1), (x,, ¥y) can be expressed in the form

(=2, )(x = xg) + (¥ = ) = ) + M - y)(x - 2) - (7~ Ya)x - x9)} = 0.

26. The square of the tangent from a variable point P to a fixed circle is
proportional to the sum of the squares of the tangents from P to two other
fixed circles. IF the three circles are coaxal, prove that the locus of Pis a
circle of the same system.

27. From a point P, the tangents PT,, PT,, PT, are drawn to each of three

coaxal circles with centres 4, 4,, A;. Prove that
PTE. Apdy+ PTy . AjA +PTE . AA,=0.

28, If a, b, c are the radii of three coaxal circles, centres 4, 8, C, prove
that #®BC + b*CA +3AB+ BC . CA . AB=0.

29. LT is a tangent from a limiting point L to any circle, centre 4, of a
coaxal system. Prove that LT%/LA4 is constant.

3b. If 8 =0, S, =0 are the equations of two circles which cut two given
circles at ends of diameters, prove that each circle of the coaxal system
&1 +25; = 0 cuts the given circles at ends of diameters.

Orthogonal circles. If two circles, centres 4, B, cut at a point X, the
angle of intersection 9 is the acute angle
between the tangents to the two circles at
that point.

Clearly this angle is also equal to the
acute angle between the radii AX, BY.

By symmetry, the angle of intersection at
Y is equal to the angle of intersection at X
and we can speak simply of the angle of
ntersection of the two circles.

Special cases. (i) If the circles touch
the angle of intersection is zero; (ii} if the angle of intersection is a
right angle, the circles are said fo cur orthogonaily and are called
orthogonal circles.

Condition that two circles should cut orthogonally. Referring to the

diagram in Fig. 51, when the circles cut orthogonally angle 4 XB=90°
and hence

ABi= AX*+ BX2,
Le. Square of distance between centres =sum of squares of radii.
If the equations of the circles are respectively
xR 2gx+ 21y +e,=0, X 4+12+2g,x4+ 20y 6, =0,
then AB*= (g, —g)* +(f, —f2F
and AX +BX:=(g1+ i~ )+ gl + it — ).
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Hence (g —g* H{/i o =(g" + /i —ed Hg '+~ ¢),s
i.e. Ag.p, +1E)=1¢, +c,

The converse result is easily shown to be true.

Ex. 10. Prove that the circle which has the points (0,4), (4,2) at the ends
of a diameter cuts the vircle X2+ y2+ 2x — 4y =0 orthogonally.

The equation of the circle on the ling joining (0, 4), (4, 2) as diameter is
x-0x-H+(-Dy-H=0

ie. X+ —dx -6y +8=0.

So n=-2, fi=-3, =8
Also g&=1, fo=-2, =0
Hence Az +hfa) =8 =0yt s

.. The circles cut orthogenally.

Any circle through the limiting points of a coaxal system is orthogonal
to each circle of the system. The equation of any circle of the coaxal
system can be taken as

S=xt+yt+ 22 +e=0,
where ¢ is a constant >0,
The limiting points L;, L, have coordinates (¥+/¢, 0).

A circle through L,, L, must have its centre on the radical axis, x=0,
and its equation must have the form

S=x+ )+ 2y + k=0,

As this circle & passes through the points (F4/¢, 0),
c+k=0; k=—c
So the equation of any circle through the limiting points is
E=xi+yt+2fy—c=0,
where fis a variable parameter.

The condition 2(g,g,+/1f2)= €1+ ¢; is clearly satisfied for the circles
S and = and consequently they cut orthogonally.

The system of circles through the limiting points of the given coaxal
system is called the orthogonal system. The two systems can be
represented by the simplified equations:

Original coaxal system  x3+)2+2ax+c=0;
Orthogonal system x4yt 4+ 2uy—c=0;
where 2, 1 are parameters and ¢ a positive constant,
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Ex. 11. Find the equation of the circle with centre on the y-axis and
cutting each of the circles S, =x2+y2+y=0, Sy=x*+A+6x-2y+6=0
orthogonally.

Method (7). The equation of the requited circle X can be taken as

2@+ 2fy+ce=0

As S, £ are orthogonal, 2[if]l=c; c=f

As 5;, ¥ are orthogonal, 2[-fl=c+6.

f=c=-2,
and the required circle is
¥1yi-4y-2=0,

Method (i). The required circle %, must have its centre on the radical
axis of 5,, S, and must pass through the limiting points of the coaxal system
determined by S,, Ss.

Radical axis of §,, 5y is 2x—y+2=0.
>, Centre of X is the point (0, 2).

As the distance of a point on the radical axis of a coaxal system from a
limiting point is equal to the length of the tangent from the point to any
circle of the system, it follows that the radius of X is equal to the length of
the tangent from (0, 2) to 5,.

. Radius of X =+/(4+2)=+/6.

Hence the equation of X is

2+ {y-2P=6
ie. x+yi-d4y-2=0.

EXAMPLES 53¢

1. Prove that the following pairs of circles cut orthogonally:
G) 2+ =2, R24+p-2x+3y+2=0;
() X+ y-dx+6y-7=0, x¥*+ 2 +3x-2y-5=0;
(iii) x2+yt-4x+3=0, 2+ 2+ 5y-3=0;
v} 23+ 22 -3x-4dy+2=0, 23+ - 4x+2y=0.
2. Find the angle of intersection of each of the following pairs of circles:
() 2+)t—dx+6y~12=0, 22+)%+2x-2y-23=0;
(i) x*+)2=3, ¥+ )R =2x+2y.

3. Prove thatthecircles x®+ )2 —dx+ 2y -4 =0, 23+ »* - 10x - 6y + 30 =10
touch each externally and write down the equation of the common tangent
at the point of contact.

4. If the circles x* + 2 - 4 =0, x®+ y* + 2ax ~ 6» + @ = 0 cut orthogonally,
find the value of the constant a.

%, Find the equation of the circle of radius § which lies within the circle
xB+ 3%+ 14x + 10y= 26 and touches it at the point (-1, 3).
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6. A circle passes through the origin and cuts orthogonally the circle
x2+ 3%+ 2gx+ 2fp + ¢ =0, show that its centre lies on the line

2ex+2fy+ec=0.

7. Find the equation of the circle with centre (a, b} which cuts the circle
x4+ 3% =% orthogonally.

8. A variable circle passes through a fixed point and cuts a given circte
orthogonally; prove that the locus of its centre is a straight line.

9. Find the equation of the circle passing through the origin and the
point { - 3, 2} and orthogonal to the circle x2+ 32— 6p+ 5=0.

10, Find the equation of the circle which is orthogonal to each of the circles
A+t x+y+1=0, x2+ ) +4x-y+4=0 and whose centre lies on the
y-axis.

11. Find the equation of the orthogonal system of the coaxal system of
circles with limiting points (-1, 1), (2, 2).

12. Find the equation of the circle which is orthogonal to each of the circles
233+ 2x-2y+1 =0, x¥4- ¥ +4x~ dy+ 3 = 0 and whose centre lies on the
Jine 3x—-y-2=0.

13, If a circle is orthogonal to each circle of a non-intersecting coaxal
system prove that it passes through the limiting points of the system.

14, Write down the gencral equation of a circle cutting the circle
x? + 32 =r? orthogonally and show that if it passes through the point (@, 5) it
will also pass through the point {riaj(a® + b2), r2h/(a® + bT)}.

5. S =(x-a,P+(- 8P -r?=0and S;=(x-x*+ (- B}t — r,2=0
are any two circles, prove that the circles $;/r;1.5,/ra=0, cut orthogonally,

16. Find the condition that the circles x®+3p%+2zx+2f1y+¢e, =0,
X2+ 32+ 2gox + 26y + €, = 0 touch each other internally.

17. Given two intersecting circles and their centres, show how a circle of
given radius can be drawn so as to cut both circles orthogonally.

18. Find the equation of the circle which cuts each of the following circles
orthogonally:

X432 4dx4+6y-5=0, x2+ 12+ 8x+y-20=0, xF+p+6x+2r-14=0.

19, Write down the equation of the orthogonal system of the coaxal
system of circles a?+)»*+3x+1=0, and hence find the equations of the
circles which are orthogonal to the circle x2+32+10x+1 =0 and which
touch the line 3x-y-7=0,

20. A circle is described on a variable chord /x+ my =1 of a given circle
¥+ 412 v+ c=0 as diameter 30 as to cut a second given circle
2+ + 2g.x + o= 0 orthogonally, Prove that the locus of the centre of the
variable circle is a circle.



THE CIRCLE OF APOLLONIUS in7

The circle of Apollonius. If A, B are two fixed points, then the locus
of a point P which moves such that the ratio PA : PB is constant is, in
general, a circle called the circle of Apollonius.

P
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Take axes as shown in Fig. 52, @ being the mid-point of A4B.

Let 4, B be the points (¥ 4, 0) and P be the point (x, y).

Take the constant ratio as 2, then

AP =)328P%
V(e i =3{(x—aP+)t,
ie. (22— 1)+ p2 — 1) = 2ax(33+ 1) + 2322 — 1) =0,

Apart from the special case 2= 1, this equation represents a circle and
consequently the locus of P is, in general, a circle—the circle of
Apollonius. There is one circle corresponding to each positive value
of ».

When a=1, the equation becomes x=0 and the locus of P is the
perpendicular bisector of AB.

Centre and radius of the Apollonius circle. The above equation can
be written

2
x9+y2—%1:_4_11)x+a1=0.

FLEN
. The centre of the Apolionius circle is the point (aigj_—l, 0) .

1
Also (radius)=q? (ig+—:) —a?,
4a%)\3
(12 1}3
2a . »AB

. The radius of the Apollonius circle is :I: —q O =y

Ex. 12. Prove that the length of the tangent from O, the mid-peint of AB,
to the Apollonius circle associated with the points A, B is LAR.

With axes through & as above, the equation of the Apollonius circle is
23(_1 + I) ra®=0,

The square of the length of the tangent from @, the origin, to this circle is o®
and hence the required result.



118 SYSTEMS OF CIRCLES

Ex. 13. A, B are two fixed points: a point P moves such that AP: By is
constant. Prove that when P iy moving directly towards A, angle PBA is a
right angle.

Y e
A/ a
(Cap} G (<) X
L
Fig. 53.

Taking axes through ©, the mid-point of AB, in the wsual way. The
equation of the locus of P is
02— DIXE+y0 - 2008+ Dx + a(32- 1} =0.
P is moving directly towards 4 when AP is a tangent to the Apollonius circle.
To prove angle PBA is a right angle, it will be sufficient to prove that the
chord of contact P2 passes through B.
Equation of PQ is
G- 1) - ax)— a2+ )(x - a) + a®(32-1)=0
Le. - Dlax+2aH2=0; or x—=a.
Hence PQ passes through B and angle PEA =90".

Apollonivs circles as a system of coaxal circles. With axes chosen
as before, the equation of the Apollonius circle associated with the
points 4, B and the ratio % is

Y 2“("11) +a@=0. . . . . @)

Taking 3=13,, %, the radical axis of the two circles Sy, .5; obtained
is 8§, —8.=0; ie x=0.

. The equation {i) represents a set of coaxal circles with radical
axis the y-axis.

As the constant term, 4%, is positive, the circles are nou-intersecting
and have two real limiting poinis, the points {F&, 0) that is 4 and B.

Properties of Apollonius circles can be deduced, if necessary, from
known properties of coaxal circles as, for example, the following:

(i) the length of the tangents from a point on the perpendicular
bisector of 4B to any Apollonius circle associated with A, B is
constant and equal to the distance of the point from 4 or B;

(ii) there is one, and only one, Apollonius circle passing through a
given point;

(i) all circles through 4, B are orthogonal to each Apollonius circle.
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EXAMPLES 5d

1. If 4, B are the points ( - 2, 0), (2, 0), find the equation of the locus of P
which moves such that the ratic AP: PB is conslant and equal to X in each
of the following cases: (i) > =2; (i} »=3; (iii) % =1-5; {v)r=1.

2. Find the centres and radii of the Apollonius circles associated with
the points (:£1, 0) and the ratios 2, . 3» #- Illustrate by means of a
diagram.

3. Show that the Apollonius circle associated with the points 4, B and
the ratio 2, passes through the points H, K which divide 4B internally and
externally in the ratio X:1. Show further that HX is a diameter of the
circle,

4. Use the result of Ex. 3 to construct accurately the locus of a point P
which moves such that P4:PB=3:7; A4, B being 6 cm apart.

£, For any two points 4, B, prove that: (i} the Apollonius circles for
different ratios are non-intersecting; {ii} there is just one circle passing
through a given point.

6. If AB=4 cm, calculate the radius of the Apollonius circle when the
ratio PA:PB=3:5.

7. If A, B are the points (F e, 0}, find the equation of the Apollonius circle
which passes through the point (2a, - a).

8. Find the equation of the Apollonius circle associated with the points
(-3, 1), (2, O) in that order and the ratio 3:5.

9. Construct the triangle ABC with BC=6 cm; ratio AB: AC=2:1 and
the median 44'=4 cm,

10. If C is the centre of the Apollonius circle S defined by the two points
A, B, prove that £A4 . CB=r?, where r is the radius of §.

11. The points 4, B, € have coordinates (-2, 0), (I, 0), (2, 0). Find:
(i)} the equation of the locus of P which moves such that PA/PRB=3:2;
(i) the equation of the locus of @ which moves such that QB:QC=2:3.
Hence find the coordinates of the points whose distances from A, B, C are
in the ratios 3:2:3.

12. A, B, C are collinear points with AB=4 cm, BC=2cm. Determine by
construction the positions of a point P which is such that
PA:PE: PC=3:1:2
13. The tangents from 4 to an Apollonius circle determined by points
A, B, touch the circle at T, T'.  Prove that 4B bisects TT" at right angles.

14. In general, show how to determine geometrically the positions of a
point P whose distances from the vertices of a given triangle are in given
" ratios.

15, P is any point on the circle of Apollonius defined by the points A, B.
Prove that the circle PAR and the Apollonius circle are orthogonal.
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16. AR and XY are parallel lings distance b apart. A point P is taken on
XY such that the ratio PA: PB is a maximum. Show that the maximum
value of the ratio is the positive root of the equation bx® ~ 2ax — b= 0, where
AB=2q.

7. A, B, C are collinear points with 4B=4 ¢m, BC=6 cm.  Show that it
is not possible to find a point P such that the ratios P4 : PB: PC=%:2:1
unless »4. Iilustrate geometrically.

18. Two circles have centres (—a, 0), (b, 0) and radii a, & respectively.
Find the equation of the Jocus of a point at which the circles subtend equal
angles.

MISCELLANEOUS EXAMPLES

1. Find the equations of the two circles which touch the x-axis at the
origin and also touch the line 4x - 3y+24=0.

2, Find the equations of the circles passing through the origin and making
intercepts of Jengths 4 and 4 on the x- and y-axes respectively.

3. Find the points of intersection of the circles x2+ 32 +4x-2y~5=0,
Xy a2y -T7=0,

4, Show thatthe circles 2+ )»* - dx+6p+8=0, x*+ 4= 10x- 6y +14=0
touch each other and find the equation of the common tangent at the point
of contact.

5. Show that the equation (y— x+3)®+2(x - 2)(y+ 2} = 0 represents a
circle. Show on a diagram the relationships of the lines x-2=0,y3+2=0,
y=x+3=0to the circle.

6. Find the equation of the circle drawn on the common chord of the
circles x2+ )+ 2x + 3p+1 =0, 2%+ 2+ dx + 3y + 2 = 0 as diameter.

7. Find the power of the point (3, 2} with respect to the circle
x*+3y2+4x+3y-1=0, and hence find the equation of the circle, centre
(3, 2), which is orthogonal te the given circle,

8. Show that the point (- 2, 1) lies inside one of the circles

B2+ 4dx- 10, 2232202 -2x~-3y=0
and outside the other.
9, Find the radical axis of the circles
24P rdx+3p+d4=0, 2x2+2y%-4x -+ 5=0;

find also the coordinates of the point on this line from which the tangents to
the two circles are of minimum lenpth.

10. Find the coordinates of the two points on the x-axis from which the
tangents to the circle x2+ 3® - 10x - 8y + 31 = 0 are at right angles.

11. Prove that the system of circles x2+ y2 + 23x + ¢ = 0, where A is a variable
parameter and ¢ a constant, is coaxal. Find the equations of the two circles
of the family which touch the line x - 2y+2 = 0 in the case when ¢ = 4.
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12. Two ciccles intersect at the points (1, 0), (2, - 1) and touch the y-axis;
show that they will both touch the line y+2 = 0.

13. Find the equation of the radical axis and the length of the common
chord of the circles 22+ ¥ +ax+ by +c=0, 2+ @2 +bx+ay+c=0

14. Prove that from any point of the ciecle 4x% + 4% - x — 18 = 0 the length
of the tangent tothe circle x® + 3* 4 2x = §is three timesthe lengthof the tangent
to the circle x2+ 2 -4 =0,

15. A, B are fixed points with coordinates (Fa, 0) and P moves so that
PA—pnPE, show that the locus of P is a circle. Show also, for different
values of », the circles from a coaxal systern and find the coordinates of the
limiting points.

16. Find the equation of the circle passing through (3, 2} and cutting each
of the circles x% + 32 - 7x— 3p+ 12 =0, 2%+ y*— x - 6y + 3 = 0 orthogonally.

17. Show that the equation x2+ 3¥—10x + 9 + Mx% + 3%+ 8x+ 9)=0represent
a system of non-intersecting coaxal circles and find the coordinates of the
limiting points. Find also the equations of the circles of the system with
radius /7.

1B. A, B, C are collinear points with AB=6 ¢cm; BC=4-5 ¢cm:; find by
construction a point P which is such that P4 : PB: PC=7 :3: 5.

19. Prove that the locus of the centre of a circle which passes through a
given point and cuts a given circle orthogonally is a straight line.

20. A, B, C are the points (g, b), (&, ), (¢, a); show that the common chord
of the circles on BC, CA as diameters has the equation

xa-br+yb-c)+blc—a)=0.

21. Find the coordinates of the limiting points of the system of coaxal
circles determined by the circles

2+ +8x4+8y-18=0, 2x2+20+10x+8y-17=0;

find also the equation of the circle of the system whose centre lies on the
line x+2=10.

22, The limiting points of a coaxal system have coordinates (-2, - 1),
(1, 3). Find: (i) the equation of the circle of the system which passes
through the origin; (ii} the equation of the circle of the system with centre
on the ling 2x—y+4=0.

23, Prove that, in general, there is just one circle of a coaxal system which
cuts a given circle at the ends of a diameter.

24, A point P moves such that its distances from twoe fixed points A, B
are in a constant ratio. Prove that the tangent at P to jts locus passes
through the centre of the circle PAS.

28, Prove that, if a, b are positive constants, the circles x2 + y® - 2ax —ab = 0,
x4+ v+ 2bx —- ab =0, centres C, D, intersect orthogonatly in real points A, B.
Prove also that the equation of the circle on A8 as diameter is x¥+)* = gb;
if this circle meets the line of centres CD at X, ¥, show that

CX:DY=CA: DA.
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26. Show that the equations of two circles can be expressed as
B+Prgx+ce=0, x¥*+y*+g'x+¢c=0 and that one of the circles will be
within the other if g¢’ and ¢ are both positive.

27, P is a variable point on a given circle of a coaxal system with limiting
points Ly, £;.  Prove that the ratio PL, : PL, is constant.

28. The circles §;, §, intersect orthogonally at P; the line of centres meets
S,at A, B. Prove that £4, PB cut S, at the ends of a diameter perpendicular
to AB.

29. Two concentric circles with centres at the origin have radii @, 5. Find
the locus of a point which moves such that the lengths of the tangents from
it to the circles are in inverse ratio to the radii of the circles.

30. Show that the equations of two circles which intersect in real points
can bewritten x®+ )%+ 2y x — ¢ =0, X+ +2,x - 2 =0. Two such circles
intersect at A, B; a line through A meets one circle at P, and the parallel line
through B meets the other ciecle at &.  Prove that the locus of the mid-point
of PQ is a circle.

31. The origin is one limiting point and x2+ 32 - 2ax -~ 2by4+ ¢ =0 is one
circle of a coaxal system; prove that the equation of the system can be
written A(x2+ y%) — 2gx — 26y + ¢ =0 and prove also that the equation of the
orthogonal system s {g+ ubdx® +3%~ clx +up) = 0.

32. The chords of contact of tangents drawn from a point P to two given
circles meet in . Show that the radical axis of the circles bisects PQ.
Prove also that the chord of contact of tangents from P to any circle coaxal
with the given pair passes through Q.



CHAPTER V1

COMPLEX NUMBERS

Definition. 1f @, b are two real numbers, any number of the form
a+by/—1
is called a complex number.
Notation. It is usual to replace 4/ —1 by the symbol i.

In general, a complex number consists of two parts, g, referred to as
the real part, and ib, referved to as the imaginary part.

N.B. (i) If 5=0, the complex number 4+ ik is wholly real, and it
follows conversely that real numbers can be thought of as
special cases of complex numbers.

(i) If a=0, the complex number -+ ib is wholly imaginary.
(iii) The complex number a-+ ib is zero, if, and only if, a=b=0.
{iv) The complex numbers a +ib are called conjugate numbers,

if a+ib= e, it is vsual to write a— ib=&.

Ex. 1. Factorise: ({y x®+1; (i) {x+af+ b
) Bl =xt_(—1)=xt_
={x + Mx - ).
(i) CctaP+B=(x+a)-22=(x+a+iblx+a~ib).

Ex. 2, Solve the equation x® - x+1=0,
We have x =ﬂ§l;4_')
=H14i4/3).

Geometrical representation of complex numbers. The complex
number z(-x+iy) can be represented geometrically by a peint P with
rectangular Cartesian coordinates (x, y).

The point P corresponds uniquely to the
number z and is frequently spoken of as
the point z. It is sometimes convenient to

>

represent z by the vector OF (Fig. 54). Ol
The plane in which the complex number z ,

is represented either by the point P (x, »), or &=~ *

Plxy)

v

-

_)-
the vector OP, is called the z-plane and the
diagram is called an Argand diagram. Fig, 54,
123
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Special cases:
(i) points on the x-axis correspond to wholly real numbers;
(ii} points on the y-axis correspond to wholly imaginary numbers;
(iii) Z, the conjugate of z, will be represented by P, the reflection of
P in the x-axis (Fig. 54);
(iv) Lhc number —z will be represented by P’( x, —¥) or the vector

OP which is equal and opposite to OP

Modulus and awmplitude. If P represenis the complex number
z{=x+iy), then the polar coordinates {r, 8) of P, where r denotes the
positive value of OP and & the angle XOP, are called respectively the
modulus and the amplitude or argument of the complex number.

The modulus of z, OP, is written as |z] and is
always positive.

The amplitude of z, the angle turned through F;
from the position OX to the position OP with the L Iy
usual sign convention, is many valued; the value |~ ‘ )
which satisfies the inequalities 0’ * X

g, Fic. 55.

is called the principal value.
The amplitude of z is written ant z or @mp z, and is usually assumed
to be the principal value.

As X=rcos0; yp-=rsind,
z=r{cos0 +i sin),
where r=lzl=v/(x¥+y%; @=amz~=tan? yp/x,

This is called the modulus-amplitude or (r, 0) form of the complex
number.
Ex. 3. If z=3+ 4, find |z| and am z.
o= r= /(321 4D =5,
am z=B=tan* ¥ (Fig. 56).

'
'vo.m (‘I+cosa —isin 9)
o T i X
|
P{14 cosh, —sin8)
Fic. 56. Fic. 57.
Ex, 4, Find: () [l +cos0—isinB|; (i) anm(l+cos6—7sin0), if 0 is acute.
(i) |1 +cos 8- isin 8} = OP (Fig. 57),
= o/{(1 + cos )%+ sin® 6},
= /{2 +2 cos 0} =+/{4 cos? 40},

=32 cos 16
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ii _iaj - —1__7_.5591_]
(ii) ani1 4 cos B — { sin 9) =tan Py

=tan! (- tan 40) = - 10,

Fundamental processes

Equality. The two complex numbers x,+ iy, X, +iyy are said to be
equal if, and only if, X;=x,; 1 =V..

Ex. 5. If $+iC=¢7(cos x+ i sin x)+¢™7 (sin x + { ¢os x), find S and C.
Equating real and imaginary parts,

S=e'cosx+efsinx; C=efsinx+eTcosx.

Additionr. The sum of two complex numbers z,(=x, + in ), 2 =X, + 1Va)
is defined as the complex number

(X1 xp) + Hyy T 1o

Geometrically, if P, P,, P, represent the
numbers z,, z,, 2, + 2,, then P, is the fourth vertex v
of the parallelogram determined by the points YIRS S
@, P, P,. This resuit follows from the fact that !
the coordinates of P,, Py, Py are (x,, ¥,), (Xs. Vs, % /
{x, + g, ¥, +¥o) respectively. Tty

1t is this parallelogram law of addition, and the )
similarity with vector quantities which leads to the
idea of representing the complex number z; by

+
the vector OP,.

Pz

Fiz. 58,

Subtraction. The difference (z,—z;) between two complex numbers
2l =xq - iy}, 2= x5+ iy,) is defined as the complex number

(x1— X2+ #(y - o).

Writing (z, — z,) as z, +(—z,), it follows that, in the Argand diagram,
the point P, representing the difference
is the fourth vertex of the parallelogram

determined by the points O, P, Fy "j,/“ \
(Fig. 59). Fac \
—_— . / I \\
N.B. As P,P, is equal and parallel to - ! Pa
= !f 1L
GP,, then / 2
7 e O X
|z, — 2] =length P.Fy; Py :

> —
am(z, - z,)=angle between OX and P,P,. Fic. 59,
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Ex. 6. If P represents the complex number z, find the points Py, Py, Py which
¥
represent (Y 2z () z+ 2 (i 2-z
() P, is on QP produced such that ¥
OP,=20P. o 8
(i) The number 2 is represented by the e 7 *"“;7"’
point 4 and P, is the fourth vertex Pl Ve
of the parallelogram QOAF,P. Py AT
(iii) The number 27 is represented by the '[ co1 2 X
point B and P’ represents —z; Py is '
the fourth vertex of the parallelogram ¢
O BP. QP" FiG, 60.

Ex. . If A represents the complex number af =3 + &) and P represents the
variable complex number x(=x+ i), find the locus of P if [z - a| =1.
|z - a] = length AP =1.
o As A is the fixed point (3, 4), the locus of P is the circle centre A4,
radius 1.
Alternatively, |z-a]=|x-3+i(v- D] = {lx- 32+ (y—4)%}.
noE-Pr-P-L,
i.e. the locus of P is a circle with centre (3, 4) and radius 1.

Py

Ex. 8. If z is a complex number such that |z+(1 + )| < 1, find the maximum
and mininum values of |2|. Y

Ceometrically it is easier to handle the modulus
of a difference than that of a sum, so write

z4+(1+7) as z-(-1-i}L
Wehave |[z—(-1-9|<1;
so if A is the point {(—1, — 1} representing the
number {-1- 1}, then the point P representing z
must lie on or within the circle centre A, radius 1.

Now |z| is a maximum when P is at its greatest
distance from O, FiG. 61.

. Maximum |z| =OM=0A+ AM =2+ 1.
Similarly, minimum |z) =ON =04 - AN=+/2-1.

Inequalities
& |2¢ + 25| < fza ] + [
Geometrically (Fig. 62),
|21+ 22{ =OPy; |z, =OPy; |z:{=0P,.
Hence the result follows from
OP, <OP,+ OP,.
Extending this result we get
|zt zet . . Falln]Flzlt o L0 ]zl
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{if) |2, — 2o} 2 21| — |z3).
With the notation of (i) above,
23— 2o} =PoPy; |71]= OPys 23| = OPs,
As OP,+ P,P,>0P,, the tesult follows. More generally,
lzi—25 . . . —z|2lg| e - oo 2l

Other inequalities involving moduli can be deduced in a like manner.

EXAMPLES é6a

1. Represent the following numbers on the Argand diagram:
() 2+1; Gi) -1+27; Giiy 34;
v} 2-iv3; (v) cos dm+isindm; (v} —2(cos $r+isin &),

2. Find the modulus and amplitude of each of the following numbers:

() 3+44, (i) 47, {ii) 3;
vy 5-12i; " -1-iv3; {vi) 1+sin8+icos 0,

3. Solve the equations:

() x2+4=0; (i) x®*+8x+25=0; (i) 2a®-2xcos@ +1=0.

4. Factorise x3— 1 and hence solve the eguation x* =1.

5, Solve the equation x*+8=0.

6. Find x and y if:

@D x+y+ilx-»N=5+2; () (x-2)+i(y-2x)= -1+,

7. If A, B represent the complex numbers g, b, construct the points which
represent:

i) a+b; (it} a— b; [§11)) b—f; {iv) a-2;
) —2b; {vi) 2a+ b; {vii} a+ b.

8. If |z| =2, what is the locus of the point P which represents cach of the
following numbers: (i) 2z; (i) z+1; (i) z-2; (iv) 2?

9. If A represents the complex number g=1+7 and P represents the
variable complex number z=x +iy, find the locus of P if: (i) |z-4] =3;
(i) |z+al=3; (i) am(z-a)=3n; (v) am(z+a) =3

10. If |z] <1, prove that am(z+ 1) lies between 3.

11. What are the greatest and least values of |2] if |z-7]<37

12, If |z + 2/ <2, find the maximum values of: G} [zl G |z-2[.

13. Show that the straight Jine joining the points z;, 2z, is divided in the
ratio m: » at the point {mz, + nz,){(m + n).

14, Prove that the centroid of the triangle with vertices z,, z,, 2; is
iz + 25+ 25

15, 1f z,, z, are complex numbers with amplitudes differing by 3=, prove
that |z, — Z =|z;+ 24|,
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16. If [2)] =|z5| and am(z,) + amizy) = 0, show that z, and z, are conjugate
numbers,

Y. If am(zy— 2,) =am{z, — 2z,), prove that the points 24, 23, 23 are collinear.

18. The complex numbers 0, 5, 1+ 3/ are represented by the points O, 4, B.
Find the complex numbers represented by: (i) the centroid: (i) the
orthocentre of triangle GAR.

19. If A, B are the points 4, 2i in the Argand diagram, find the complex
numbet represented by the circumcentre of the triangle 045,

20. Express the roots of the equation x*+ 1 = 0 in the (r, 0 form and show
they will be represented by the vertices of an equilateral triangle.

Multiplication and division. The product of the two complex mmbers
X131, X E 8y, Is defined by the relationship,

(x1 ) X (g + 1Ve) = (XX — Py ye) -+ KX s+ 3,75).

This definition makes it possible to use the ordinary processes of real
algebra with the symbols x,, yy, X,, yo, i; for assuming these rules apply
we have,
(g + i )00+ i9) = Xy + Ixyyy + U_’l-’f s+ 12y, .
= (x1Xy = Py T ilx Yt yixy), as = — 1,

The quotient of the two complex numbers x, + iyy, X5+ iy, is defined as

(X1Xg + Y1Yo) + iy X — Xnya)
Xt ygt

a result which is readily deduced as follows:

Yob D (X)X =iy (XaXe+ p1ve) +Hnxe — X, pa)

Xty (xpt+ip)(xy—iys) X2+,

It will be noted that the process used to make the denominator wholly
real is simnilar to that used to rationalise the denominator of an irrational
surd fraction.

Ex. 9. Express (24 /R/{1 + i) in the form a+ ib.
Q+DF QriA1-D (4+4i+8(1-1)
1+ G- 2
=47+ ).

We have

Product and guotient of two complex numbers in the (r,0) form,

Let
z1=n(cos 0, +1{sin B); z,=ry(cos 8,+7sin 9,).
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Then
2,24 =F174(C0s 0, i sin 6,)(cos O, + i sin 6,),
=ryrgf(cos 8, c0s 8,— sin 9, sin 8,}+ i(cos 6; sin B,+sin 6;cos 8,)},
= refcos (B, +6,) + i sin (8, +65)}.
Le. the modulus of the product of two complex numbers is the product
of their moduli and the amplitude of the product is the sum of their
amplitudes.

This result can be extended and, in general, we have

52y . o Ia=NFy . . . FafCOs (8,10, + . .. +8y)
+Esin (0, +0,+ . . . +0a))-
N.B. Taking z,=2z,= ... =Zn=cos0+isin ¥,

(cos 8 + i sin 8)" = cos 10 + i sin nd,
if m is a positive integer.
Taking the case of the quotient,
2y _n{cos By +isin 8)_ rfcos 6, +i sin 6,){cos 8, —i sin 8g)
Zy  7o(COS B, +Psin 0y) 7,{COS &, -+ sin 0,)(cos 6, — 1 5in 6)
ry (cos 6, cos 0, sin 8, sin 8,) -+ i(sin 8, cos 8, —cos 0, sin 6,)
T ta CoSZ B, - sin® Oy ’

=cos (6, B;)+i sin (6, ~ 65)).

Le. the modulus of the quotient of two complex numbers Is the quotient
of their moduli and the amplitude of the quotient is the difference of their
amplitudes.

Geometrical representation of a product and a quotient. Let P, P,
represent the complex numbers z;, z, and let 4 be the unit point on the
x-axis. Then OA=1, OP,=r, OP,=ry; LXOP; =8, LXOP,=%,

Referring to Fig, 63, the point P representing the product z,z, is
obtained by making £ P,OP=/.A0P,=9, and LOPP=/0AP,.
For £ XOP=0,+6, and by similar triangles, OP =r,r;.

Y] il
]
1
1
1
Py
ra 7 1’2
s
—_ T
[l A X x
Fi1G. 63. FiG. ¢4.

In the case of the quotient the point P representing z,/z, is obtained
by making £ POP,=/ AOP,~9, and £ OP,P= / OF;A (Fig. 64).
For /. X0OP=8,-6, and by similar triangles, OP=r/r,.
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1 . (cos0~-i s_ln 3)3

Ex. 10. Simplify: @) cos 8+ /sin @’ (i) cos 26 +i sin 20

@ 1 _ cos 0 - :fsinﬁ
cos0+isinf (cos @+ sin OMcos 0 —isinB)

=cos0-ising;

or alternatively, writing 1 =cos0+isin 0,

1 __cosD+isin0

cosO+73in® cosB+isind
=cos 0 —7sin 0 as before,

(if} (cos 8 - i sin 0)° ={cos ( - )+ sin (- 8)}¥=cos {— 30} +{ sin { — 36).

. {cos 60— isin9)

" cos 20+ 7sin 26

=cos (00— 8} + sin (0 - B)

cos (-~ 30 — 26)+ i sin { - 30— 20)=co0s 50 — i sin 50.

Ex. K. If Py, P, represent the numbers r,, 2o, show that OP,, OPy are
perpendicular if 2,/z; is wholly imaginary.

As z,/z, is wholly imaginary, its amplitude is +r=/2.

But the angle P,OP; is equal to armiz,/z;), and hence OP,, OP, are
perpendicular.

EXAMPLES 6b
1, Simplify the following expressions giving each result in the form a + ib:
@) -2E-i)y; G (1+H(1 - b; (i} (2307
(iv) - ) Q+DHL+); i) 2+30/3 -4,

(vily 2-DF1+ 30 (vidd) L1+ DR
2. Express the following in the gmplitude-modulus form:

{i) {cos 0+ i sin 0)%; (i) {+/2cos 0+ 1 sin®)};
(i) 1/(cos B-7isin 8); {iv) (cos & - i sin6)?;
()00364*!51]13 tvi) cos 40 — i sin 44
cos B—isin §’ cos 20+ sin 26’

(vil) {cos dn—isin im)%; (viii} (sin 1w +7cos ).

3. Simplify {x - (cos {n+ i sin Im)}fx - (cos $w ~ 7 3in in)}.

4. By expressing cos %r:, sin 2w in terms of cos 1=, sin ix, simplify the
product {x — (cos }= +{ sin +m)}x - (cos I~ + i sin Lm)}.

3, Find x and y in each of the following equations:

@ x-postos ) xtip=(-D% G VE+B)=5+3
6. If z=cos 0+ isin 6, find the values of:

@ 1z, (i) z+1f2; (i) z- 1z
7. If w =3 — 1+ #4/3), show that the cubes of » and «?® are each unity.
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8. Simplify: (@)} (1 +iv3¥-(1-iv3)4 () (1+cos0+isin 8P,
9. Given that +/(x+iy)=a+ib, prove that x=a®- b3, y=2ab. Hence
express +/(3 +4i) in the form a+ ib.
10. If z =24cos 3n +i sin &x), find the value of 2z+1/2%
11, Prove that |1 - az] =|a||z- 1/a].
12, Given that |z-aljz- 5| =k, where a, b, k are real constants, prove

that the point P, which represents z, moves such that the product of its
distances from two fixed points is constant and equal to k.

13, If P,, P,, P, are the points z;, 7, 7, show that am(z, - z)/(z; - 2y is
represented numerically by the angle P,P,P,. Deduce the condition that
P, P,, PPy are perpendicular.

14. If z=x+iy, w=u+i» and zw =1, prove that
u=x/(x®+yD, v=— /25y

‘;’——-l- l =k, a constant, prove that the locus of P is a circle.

15, If T

16. The complex numbers z=x+ijy, w=u+Jy, are connected by the
relationship (1 - z2X1~ w) =1, Express z in terms of w and prove the results:

B+ Vi-u -V

PR re R e ) e

Geometrical properties of the Argand diagram, In the following
section, P, P,, P,, . . . will be taken as points in the Argand diagram
representing the complex numbers z, z;, zg, . .

() |z,—za| =length P,P,, a result already established.
Consequently if the variable number z is such that

=2,
—‘|=constant,
Z— 2

then P moves such that the ratio PP, : PP, is constant and its locus is a
circle—a circle of Apollonius associated with the fixed points Py, P,.

> >
(i) am(z,—zy)—angle between the vectors OX and PPy measured
from the _former.

=
This result follows directly from the fact that P, P, is equal and parallel
to the vector representing (z;—2,).

Clearly, am(z,— 2,)—am(zy—2,)=+x or —n.
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(iii) am z,/z,=angle between the vectors Ou?’, and O-;l measured from
the former.
This result follows from the fact that
am I, fz,= am z; — am z,,

> >
where am z, = the angle between OX and OP,; and am z,= angle between

> >
OX and OP,.
N.B. In Fig. 65(i), am z,/z, is positive and in Fig. 65(ii), am z,/z,
is negative,
Y Y

(i) @ M
F15. 65,
) - > ->
(iv) am z_z‘ =angle between the vectors PoP and PP measured from
2

the former,

This result follows from (i1} and (iii) above.
z—
Z—z,

X
=the positive angle ¢ & P

In Fig. 66, am

> >
as the direction from P,P to P.FP is counter-
clockwise,

It will be seen from the diagram that ~¢ x

am ;:—i‘ is of constant sign for all points P FiG. 66.
2
on the same side of the line £,P; and of opposite signs for points on

opposite sides of this line,
) If am "2 —am 2172, yhe points Py, Py, Py, P, are concyclic.
23— Zg 24— 2y
Referring to Fig. 67, the given condition
is equivalent to ™ P2
"—'-Pz'PsPl'—- L PP, Py,
and hence the result.

N.B. Alternatively, the condition for four
concyclic points can be expressed as

Zg—2Iy Zy—Zy .
8. 1 . “s <2 ir reaf.
Zy—Zy I, ) FiG. 6.

P¥ Fa
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Ea—81 Z4—Z
a0 a5 g
= L4mn

For this leads to

2,’_22

. Zo—2Z
ie. am 2—+am =0,
3= 23— 2y
Z3—2Z 24—32 -z
o, am BT g o gm T A
Zs_'ZS 24724 Z —Zg
(vi) If PyP.P; is an equilateral triangle, v
P;
(z2—23)3+(zs-—z:)g+(zl— zP=0. P,
ASP1P2=PIP8, 4 ‘"‘l
12 —zs
F3
1 23”23} _a
Also as ZP P Py=1in, am|>— =37  _
21 """‘23 [«] X
2y & .=
S A—"Fecos tntisin i, FiG, 68.
3 a1
- . 22_23
Similarly, 2 “F—gosin-tisinin
Z3— &
T2 _2ZpT 2y
Tzy—zp Za I
(2, — 2,02 — 7)) = (2, — 23)(z, — Z5),
28 2B 2 =g+ 292y + 2425,
1e. (Zg— 2B+ (23— 22+ (2, -2, =0

Transformations. If w(=1-{v) is a function of z{(=x-iy), then the
point P(x, y) is transformed into the point Q(u, v} and the locus of P
transforms into the locus of Q.

(i) w=2z+a, where a is a constant complex number =g,

We have ut+iv=x+iy+etip,
={x-+a)+iy- B
oou=xta; v=y+p
So P(x, y) is transformed inte Q{x+ «, y-+ p)}—a simple translation.

If f(x, ¥)=01s the locus of P, then f{x— «, y— £)=0 will be the locus
of (.

Consequently, the curve f{x, y)= (0 is unaltered by the transformation
—it is merely moved distances =, p parallel to the axes.
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(i) w=uqz.
We have  ut+iv=(e+ip)x+iy)= ax—py+i{px+ ay).
. w=ax— By, v=fx+axy.
So P(x, y) is transformed into Q{ax— By, Px+ ay)-~this is equivalent
to a magnification of /{234 8% and a rotation tan™ Bf=.

. W uty

By writing Z=E=a+ip’
_au+Br,  av—Pu
e get e Ve

_ xx+ By ay—BxY_
and hence the locus f(x, y}=0 becomes f ( ET P ot 3s) 0.

(iii) w=az+b. This general linear transformation can be effected
by applying transformations (i), (ii) successively. It gives magnifica-
tion, rotation and translation and the pature of the locus of P is
unaltered.

The method of dealing with more complicated transformations is
illustrated in the following examples.

Ex, 12. Under the transformation w =1z, show that a circle passing through
the origin transforms into a straight line.

We have z= ~l—.

[ P .
o e R
The locus of P is a circle passing through the origin; its equation will be
of the form

X242 4 2gn+ 2y =0,
w \? -y 1% o -
Hence (mvs) +(a’+v’) +2€(w+a)+2f(uz+v=)=°’
or, 23“—2fv+l=0.

So the Jocus of Qfu, v} is the straight line 2gu-2f++1=0,

Ex, 13. If w=z+1/z, show that when z describes the semicircle
|z| =k>+1, =0, w describes part of ar ellipse whose axes are the coordinare
axer.

We have u+ivex+iv+

=3
X+ iy

-

=x+iy+§;7)%-

T S
CEEATALE VTV T e
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The locus of zis  |z] =v/(x%+ %) =k, y2 0,

ie. Bkt 20 . . . . . L . B
Copexy X _ Ku
CETEY R T

¥, &2
VEY TRy YTy

Substituting in equation (i),

()« (o) =

As k321, this is the equation of an ellipse with the coordinate axes as
principal axes.

Also the condition =0 is equivalent to v 0.

Hence the locus of w, the point (g, +), is the upper part of an ellipse with
axes OX, OY.

EXAMPLES 6c

1. Plot the points zy =1+ 4/, z, =2+ 3/, 23+ — 1 +{ and use your diagram
to find: () |z; - zal; (i) |2, 2gl; Gii) |23~ 2z,). 1s the triangle formed by
the points z,, z,, z, acute-angled, right-angled or obtuse-angled?

2. With the same three points as in Question 1, determine the signs of
amzy - z5), am 122, am 237 %2 4nd indicate the angles on the diagram.

I~ 2y Zy- 2y

3, Show geometrically that |z, — 7| + |25~ 21 2 |2, - z5]. When does the
equality arise?

4. If |z - (1 + 2/))< 1, show the area occupied by z on the Argand diagram
and find the maximum and minimum values of (z|. What is the value of
am(z) at these points?

&, The vertices of triangle PP, P, represent the numbers z;, z,, z;. Show
that the triangle is right-angled at P, if one of the conditions

12, - 2alt = |2y~ 25{2 + |2, - % am’ - P i,

is satisfied. _

6. If z,  are conjugate numbers, plot points P, P to represent them and
in the same diagram represent the numbers: (i) z+4 (i} 1/Z; (i) -1jz;
(iv) 2z- (1 +1).

7. W z=x+iy, w=u+ivand w=z2 find u, vin terms of x, . Show that
the rectangular hyperbola xy =1 transforms into the straight line v =2.

8. Given that E—:—%‘ =1, show that the locus of P is a straight line bisecting

a certain.line at right angles. Construct the locus.
9, If am{z, - z,) =am(zy - 2,), show that (z,- 2;)/{(z5— zg) is real. Inm this
case what is true about the lines 2,2, 2,77
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10. Given that |z{< 1, find the greatest and least values of: (i) |z-2);
(i) lz+ 34,

11. if A is the point (2, 0) and P is a point on the unit circle |z} =1, show
on the Argand diagram an angle ¢qual to am(z-2). Prove that
am z{{(z-2) = +1in when am(z) =F 3w and deduce that z/(z—2) is wholly
imaginary when z =cos ix 4isin in,

12. Show that the points Py, £y, Py are collinear if (z, - z/(z; - zp) is real.

13. If w=1/z and the point P representing z moves along the line x =1,
show that the focus of Q, the point representing w, is a circle passing through
the origin.

14. Find the equation of the locus of a point z which moves such that
z—1 .

!51_2? =2, Identify the locus.

15. If P represents the complex number z, show geometrically how to find
the points which represent 22, 1/z, z+ 1/z.

16. If 2,, z,, z5 are the vertices of an isosceles triangle right-angled at z,
prove that 2.2+ 22,2 + 2.2 =2z,(z, + z,).

o

17. if lzz_-l-%’r =2, show that the locus of z is a circle and find its centre
and radius. Sketch the locus and use it to determine: (i) the maximum and
mininum values of |z|; (ii) the range of possible values of am(z).

18. When the transformation w—(2z+1)/z is applied to the circie
x84+ )2- 2x+ y=0, find the equation of the transformed figure and show that
it is a straight line,

19. If w=2z® and z describes the line x=1, show that w desctibes the
parabola u=1- 3. Trace on a figure the course of w as z moves along
x=1from - to + oo,

20. I¥ (z;— z,}(zq - z,) and (23— z)/(z, - z) are each wholly imaginary,
prove that P, is the orthocentre of triangle P,P,P, and deduce that
(zy— Z)/(2 - 2,) 15 also wholly imaginary. '

21. Prove that the triangles with vertices 0, 2+ 34, 3+ 4i; 1+, 7-3,9-5i
are equiangular,

22, If w=(2+2)/(2~ z), show that as z describes the y-axis from —oo to
+oo, then w describes the circle x*+ 32 =1 in a counter-clockwise direction.

23. P, Q represent the complex numbers z, w, where |z] =1 and
w=1/1-z+z%). Prove that OP, O are equally inclined to the x-axis.

Exponential functions of a complex variable. When x is real, it has
been shown that
. X2 8
2_i + ﬁ + LR
the expansion being true for all values of x.
If z is a complex number, we define e? by the relationship,

X

z z¢ Z
e‘z1+ﬂ+i§+3-f+ -
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It can be shown that the infinite series on the right is convergent for
all values of z, and in consequence the definition holds for all valaes
of z. Moreover, using this definition for ¢, it can be shown that
complex exponential functions obey the ordinary laws of real algebra;

e.g. g X gfa == gB1¥ %,
Exponential form of 2 complex number

We have e""’=l+ll.—ﬁ.+@):+(m)s-i-(!l)‘+@+ .

2! ar o4 51 T
g & . R
=I—'2—I.+Z!"" . +l(a—§-i+5—!— .. .),
=cog 8+7sin 6.

. The complex number r{cos® +i sinB) can be expressed as reft,

Ex. 14. Express (i) cos dn+isindn; (i} ~1; (i) 2+ 1 in the exponential
Jorm.
(i) cos 4+ isin 4 = et
(i) —1=cosn+isinx=e";
(iii) 2+ 7=1/5(cos 8+ isin 6), where 9 =tan1 3
=+/5¢%.
Applications of the exponential form of a complex number. The use
of the exponential form for a complex number leads to simple proofs
of some of the results obtained previously.

E.g 2,2g=F, €9 X py €10 = rypy @801 100,

So the modulus of a product is the product of the moduli and the
amplitude of a product is the sum of the amplitudes.

Such a result as (cos 8+ sin 8)*=cos 36+ sin 38 follows from the
corresponding exponential result, (ef?)>=e°.

Some of the most important applications of the exponential forms
are in integration and the solution of linear differential equations.

Ex. 15, Integrate: (i) ¢* sin x; (if} ¢™* cos 3x.
(i) We evaluate f et dy and take the imaginaty part of the result.

Now fe‘e‘”dx =fe"”+"dx==i-_1!_-i.e”“”’,

i-7

= &*{cos x + i sin x), ignoring the arbitrary

constant.
= [ ef(cos x+ i sin x)dx =4e*f(cos x + sin x) + I (sin x — cos x)}

and equating imaginary parts,
fe'sin x de =%&* (sin x ~ cos x).
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(i1) We note that cos 3x is the real part of &%=
Now fe’e“""‘dx=[e’(”3i)dx - . eF(1+30)

1+3i
J1-3
CI0

e*{cos 3x + isin 3x), ignoring the arbitrary
constant.
Equating real parts,

[e’ cos 3x dx =7¢" (cos 3x + 3 sin 3x),

d% ,dy -
P 2 ,x+4y—0is
y=e"H{C 08 v/3x+ 5 s5in +/3x}, where C, 5 are constants.

The function €™ is a solution of the equation if
m+2m+4=0; ie. m=-12i4/3,
Hence the general solution of the equation is of the form
y=Aet1tivairy pa-1-iv®z where 4, B are arbitrary constants,
= A e Mcos v Ix +isin +/3x)+ Be*Hcos (- +/3x)+ i sin (~ +/3x)},
— e *{{A+ B) cos v/3x+i(4 - B) sin +/Ix},
=& *{Ccos v3x+ Ssin 3z},

Ex. 16, Show that the general solution of the equation

EXAMPLES &d

1. Express in the (r, 8) form: (i) ef; (D) ebin; (if) et (jv) gl+tom;
vy e ¥ (vD) e (i) e"CIVEL (i) J(et L i),

2, Express in the exponential form:

(i 1: (i) 4G+ +/3); (iii) cos 40 +7gin 49;
(iv) cos8—isin8; (v) sinf+jcos &; (vi) 4-3i.

3. Express each of the following functions as the real part of a complex
number in the exponential form: (i) cos 2x; (ii} cos 5x; (iii} cos (4 + B);
(iv) cos (A B); (v) &* cos bx.

4, Use the result &4+*H—gid o8 (5 obtain the expansions of
¢0s (A -+ B) and sin {4 + B).

3. Obtain expressions for cos (4- B5) and sin (4 — B) by the method of
the previous ¢xample,

6. Establish the results:

() cos0=4{e+¢7); (i) sinh= é—i(ef" - g i,
7. Use the result cos 36+ i sin 38 =(cos 8 + i sin 0)% to obtain expressions
for: (i) cos 30 in terms of cos 8; (i} sin 30 in terms of sin 6,

B If x+iy=e'*" prove that x%+)% =¢2
9. Simplify otz gla-itdr



MISCELLANEOUS EXAMPLES 139

10. Express: (i) cos 26; (ii) sin 36; (iii) tan 6 in the exponential form.
11 Evaluate: (i) f &* 008 x d; (i) f & sin 2x dx;
(i) f Eoosdxds; (V) f ¢ sin x dx.

12. Obtain the general solutions of the following equations:

&y dy, o @y _dy 4. 0.
()] +dx+ y=0; (ii) dx’ dx+2y 0;
Gii) 2—3- D20 (i) D i = 0;
dx’ dx Y= dart ’
- el — 2
%] dr“+2kdt+“" 0, where k<.

13. Write down the expansion of e1+¥ ag far as the term in x¥ and deduce
the first four terms in the expansion of e* cos x as a power series in .

14. Obtain the first three terms in the expansion of 7% sin 2x as a power
series in x,

15, Write down the third derwative of =@ 1 with respect to x and deduce
the values of —-(e”cos x), a xs(e"’sm X,

16. Find the value of the fourth derivative of ™" cos 4x with respect to x,
when x takes the value zero.

MISCELLANEQUS EXAMPLES

1. Express 1j{1 + z) in the form a+ ib, where z~=cos 0+isin 8.

2. Simplify (1 4+i4/3)8+(1 - {4/ 3%,

3. If |z| #£1, show graphically that |1 -z{z [1-|2]|.

4. The point P represents the complex number z.  Show how to find the

point O which represents 1/z. If P moves round the circle |z[ =1 in a clock-
wise direction, find the path traced out by Q.

5. Find the centre and radiuvs of the circle [z- 1 -i[=2. Determine the
curves traced out by the points; () z+2; (i) 1/z.

6. Il wy=az,+ b, wy=az,+ b, wy=az;+b, prove that

w a—
(232}
Wy — Wy 21~ 23
Deduce that the triangle with vertices wy, w,, Wy is similar to that with vertices
Zyy Zay Ty
7, Simplify: (@ e“+e % (i) eVHIvEr L g-ivBas (i) glad_ giut,
8. A, B, C, D are the points in the Argand diagram representing the
complex numbers «, 8, 3, 8. If ABCD is a parallelogram, show that
ety =p+8
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9. Find the equations of the loci of the points representing the complex
number z which satisfy: () [2] =2; Gi) [z-3[=4; (i) amz=1r;

@) z2-2-i =1 () amlz=1)=dm; () | 2| =2 (vii)am;_{_-_—}=%m

10, Prove that |zy+ 2,2+ |z, — 2|2 = 2|72+ 2[z,|? and illustrate the result
geometrically.

11. Express cos B and sin 0 in terms of €%, ¢~ and deduce the results:
(i) cos? 0+sin® 0 =1; (ii) cos* 6+sin* & =13 + cos 46).

12. If z=cos 0+ sin 0, prove that (l—-}i)/(HZ—lﬁ,) —itang,

13, Two fixed points 4, B and a variable point P represent the complex
numbers a, b, z respectively. What is the locus of P if: (i) |z—a] =1{b|;
(i) am(z— a)= am(z- Bb)*

14, If [z+2- <, find: (i) the maximum value of |z|; (ji) the minimum
value of |z-2i].

15. Find the modulus and amplitude of each of the following complex
numbers: (1) (14t +i4/3); G (1-0% i) (L+0%  Giv) 13 +08;
(v} (1435

16. Take a point P to represent the complex nuwmber z, and in the same
diagram find the points representing () iz; (i) 2z-1; (iD) 2% (v) - 1/z

i 114
17. Evaluate [ & cos bx dx, f e sin bx dr, where b is a positive
a 0

even integer.

18. Prove that the points representing the complex numbers 1, -1, a+ b,
1/(a+ ib) are concyclic.

19, POQRS i3 a parallelogram and X is the point of intersection of the
diagonals; if P, R, § represent the numbers 1+ 3/, 2+ 6i, 5+ 7/ respectively,
find the numbers represented by the points ¢ and X.

20. If w=z2, where w=u+iv, z=x+{y, prove that u=x2- %, v=2xy.
Show that when z describes the unit circle [z] =1, w describes the unit circle
| =1 twice,

21, If #and v are rea), find the moduli of: (i) e¥+%; i) e* % (jii) (W),

22, Find the modutus and principal value of the amplitude of
(l+cos20+i5in20) in each of the following cases: (i) O0<O<ir;
(i) dr<b<m; (i) -dn<8<0; (iv) n<b<2nm,

23, Py, Py, Py, P, are the points 2,, z,, 24, z, and © is the origin; show that
if Z12a+227,=0 and z,+2z,=0, then Py, Py, P;, P, are concyclic and the
triangles AQC, DOA are similar.

24. The complex number z is represented by the point P; if (z— 1)/(z- )
is wholly imaginary, prove that P moves on the circle centre (4,4},
radins 1/+/2.

25, P, Q are the points representing the complex numbers «, 8 and O is
the origin. If OF =00, prove that (x — #){(z+ B) is of the form iq, where ¢
is real,
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26. Prove that the two triangles whose vertices represent the complex
numbers ay, aa, as and by, by, b, respectively are directly similar if, and only if,
01 bl 1 “‘D-

g bg 1

a3bal

27. Prove that #*sin x =;—l. {3 +i7 _ g0 -18Y and hence obtain the coefficient

of x* in the expansion of €°sin x as a power series in x.

28. Prove that the relationship w = {1 +iz)}/(s+2) transforms the part of
the real axis between =1 and z = - 1 into a semicircle connecting w=1 and
w=-—1.

29, if the points z;, 74, z3 lie on a circle through the origin, prove that the
points 1/z,, 1/z,, 1/2; are collinear.

30, If (2, - 202y — 227 =(2s — 2.)(z5" ~ 25"V =(zy — ;023" — 2,"), show that the
triangles with vertices z,, 2y, 2z and zy', z,', z," are equilateral.

31. Find the modulus and amplitude of (14 z}(1 — z) where z=¢ and 6
is acute.

32. If the points 4, B, C representing the complex numbers «, £, ¥ are
the vertices of an isosceles triangle, right-angled at B, prove that

(o~ BPF+(y - PF=0.

33. Solvethe equation x3=1. Show that the complex roots are of the form
s, o and obtain their moduli and amplitudes. If the points z,, z,, zq form an
equilateral iriangle taken in anti-clockwise order, prove that

7tz + ez =0,

34. Find the region of the Argand diagram in which z must ke if
z-3 +2%
1-32-2z

1
35. Prove that the curves | | =constant and am(z+ 1) =constant are

>1.

orthogonal circles.

36. Two complex numbers z, w are counected by the relation
w=(z- 1)/{z+1); the point z describes the citcle x*+ 33 =1 in a counter-
clockwise direction starting from z=1, Find the path traced out by the
point w.

37. Find the value of dt (oos x cosh x) when x =0,

38, Show that the transformanon w=4/(z +1)* transforms the circle
|z} =1 into the parabola ¥* =41 — &), where w=wu+iv, and that the interior
of the circle corresponds to the exterior of the parabola,

39, Show that with the transformation w =z/(z - 1), the straight line x =1
is transformed into a unit circle.

40. If w=a(z - e){{z+ c), where g, ¢ are real and positive, show that the
interior of the circle |z] =¢ in the z-plane corresponds to that half of the
w-plane which lies to the left of the imaginary axis.

41, If z=¢%, express: (i) 1/{l-zcos0); (i) {l -zl -2), n a positive
integer, in the form a+ ib.



CHAPTER VII

ELEMENTARY THEORY OF EQUATIONS

Polynomials and polynomial equations. Consideration wili be given
to elementary properties of equations of the form

Px)=apxt+axt a4 .. tap— xtan=0,

where the coefficients a,, @, . . . a, are real.
The function P(x) is called a polynomial of degree n and the equation
is a polynomial equation of like degree.
Eg 3x8-2x24+ x—6=0,
is a polynomial equation of degree four.

Basic theorems
(i) Every polynomial equation of degree 1 has at least one root.
The proof of this fundamental theorem is beyond the scope of this
text.
(ii) A4 polynomial equation of degree n has n roots, real or complex.

For by {i), the equation will have one root, say «,.
S Px)={x— a)Pyx),
where P.(x) is a polynomial of degree n—1.
Again, the equation P,(x)=0, has a root, say oy,
hence Pi(x) =(x = 2)Py{x),
where Fy(x) is a polynomial of degree n—2.
Proceeding in this way, if follows that
PXy=agfx—ad{x—ag} . . . (x—aa)
.. the equation P(xy=0,

will have n roots oy, o, . . . .

Ex. 1. Given that two of the roots of the equation x3+x% - 5x2-4x+4=0
are numerically equal but opposite in sign, solve the equation.
Two of the four roots can be taken as +a and the quadratic factor
corresponding to them will be x3- g3,
We can write x4+ x3 - Sx%— dx + 4= (32— aB(® + bx + 6.
142
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Equating coefficients of x5, 1=5;
equating coefficients of x, —4= —gth, qal=4;
equating constant terms, 4=-g¥%; e=-1,
S -4t x - 1)=0,
x=42 H-14+/5),

(iii} Conplex roots occur in pairs.

For suppose x=«+iB, =0, is a root of P(x}=0.

Let S(x)=(x—a+ip)x—a—ip)
=x¥-Zex+o® + B

When P(x) is divided by S(x) let the quotient be Q(x) and the
remainder Ax + B, where 4, B are real constants.

Then P(x)=0(x)S(x)+ Ax+ B.
Putting x equal to =+ /g and noting that P{a-+ i) =0=5(x-+if),
0=A(x+ip)+ B.
S Ax+B=0; Ap=0, where g £0.
Hence A=E=0.
.. 3(x) is a factor of P{x) and consequently x=wo—ig is also a
root of the given equation.

N.B. From theorems (ii) and (iii), it follows that an equation of
odd degree must have at least one real root.

(iv) drrational roots of the form w--+/B, where ¢ is not a perfect
square, occur in pgirs.

This is proved in a similar manner to (iii).

Ex. 2. Solve the equation x3+ x* —8x®+ l4x - 8=10, being given thar 1+i
is one root.

As 1-iis also a root, a quadratic factor of the polynomial is
G-T+iXx—-1-10) or xT-2x+2,
By division, Px)=(2- 2x+ D2+ 3x-N
=(x2-2x+ Dx+4)(x - 1)
Hence the roots of the equationare 144, 1, - 4.

Zeros of a polynomial. Corresponding to the roots of the equation
P(x)=0 are the zeros of the function P(x). In particular, real and
distinct roots correspond to the points of intersection of the graph
y=P(x} and the axis of x. A repeated real root of the equation
corresponds to a point where the graph is tangential to the axis of x.

Consequently, knowledge of the shapes of polynomial graphs will
be valuable in the location of the real roots of the corresponding
equations,
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A feature of a polynomial graph is its continuity, and hence the
follewing important results:

(i) if P(a), P(b) are of opposite signs, there is at least one zero of
P(x) between g and b;

(ti} if P(a), P(b) are of like sign, there is either no zero of P(x) between
@ and b, or an even number of zeros.

Ex. 3. If P(x)=3x*-8x°-6x2+24x-10, obtain the signs of
P(—oo), P(- 1), P(1), P(2), P(+oC) and deduce that the equation P(x) =0 has
Sfour real roots,

For numerically large values of x, the sign of P(x) is determined by the
sign of the term 3x%; the signs for other values are determined by
substitution,

We have, x ~ a0 —1 } 2 +

Pix) + - + - +
.. the equation P(x) =0 has at least one real root in each of the intervals
—aoto -1, ~1tol,1t02 2t0 +a0; but the equation has at the most
four real roots, and so one must lie in each of these intervals.

Ex. 4. Prove that the equation x*+ 4x - 1=0 has only one real root and
find the integers between which this root fies.

In locating the roots of P{x)=10, it is useful to consider the roots of
F(x)=0 as these give turning-points on the corresponding graph.

In this case, Plx)=s3x2+ 4,

Clearly there are no real solutions of the equation P{x)=0, and conse-
quently the graph y =P(x) has no turning-points. As P(- o0) is negative
and P(+ <o) posttive, P(x) increases steadily and only cuts the x-axis once.

Hence the equation has only one real root.

By trial, PO)Y=-ve; P = +ve,

and so the real root lics between 0 and 1.

Rolle’s theorem, This theorem, which is helpful in locating the real
roots of a polynomial equation, can be stated as follows:

If a, b are consecutive real roots of the eguation P(x)=0, then the
equation P'(x)=0 has an odd number of real
roots between a and b.

This result can be justified geometrically,

Referring to Fig, 69, the graph y=P{x) \/R\/

Y

cuts the x-axis at peints 4, Bcortesponding 9] “& - X
to x=q, b. As the graph is continuous, ]
there must be one turning-point C between A Fio. €9 :

and B or an odd number of turning-points.
As turning-points correspond to roots of P'(x)=0, the result
follows,
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As a corollary of this theorem and the resulis on the zeros of a
polynomial, it foilows that, if &, B are consecutive real roots of P'/(x)=0:

(i} there is exactly one real root of P(x)=0 between « and B if
P{ax), P(B) are of opposite signs;

(i) there is no real root of P{x)=0 between = and B if P(=), P(B) are
of like sign,

Ex. 5. Skow that (i) the equavion x*-3x+1=0 has threc real roots;
(if) the equation x®—2x%=1 has only one rea! root.

(i Px)=x3-3x+1; Pix)=31%-2
The equation P{x)=0 has real roots +1.
Now P(—1)=+ve: P(l)=-ve

So there is one oot of the equation between -1 and 1.

Also P(— o0) = —ve; P(+ o) =+ve, and as the equation has at the most
three real roots, there is also one real root in each of the intervals - oo to -1,
1to +co.

(ii) Plx)y=x3-2t-1; PlO=3x-4x.
Here P'(x) =0 has real roots 0, 4-
Now PO)y=-ve; PE)=-ve

So there is no real root between 0 and %-

Also P{- o0) is negative as is P{0) and, as there are no turning-points
between — oo and 0, it fellows that there can be no real roots of P(x) —0 in
this interval,

As P(3), P(+ o) are of opposite signs and P'(x) does not vanish between
% and + oo, there is exactly one real root of P(x) =0 in this interval,

Hence the equation has only one real root, which can be verified as lying
between 2 and 3,

EXAMPLES 7a

1. Without solving, show that the roots of the equation 2x2+5x-4=0
are real and lie one in each of the intervals —4to — 3,010 1.

{

2. Show that the roots of the equation 1 + 1 + —— = D lie between
x+1 x-1 x-2

~land1, ! and 2.

3. How many roots has the equation x®-x?+1 =07 Show that at
least one real root lies between —1 and 0.

4. Solve the equation 3x® - 7x®— 60x 4 140=0 being given that 2+/5 is
one root.

5. Two roots of the equation 7x®+9x®- 14x - 18 =0 are numerically
equal but opposite in sign. Solve the equation.

6. Show that the equation x® - 27x ~ 36 = 0 has a real root in cach of the
intervals ~5t0 -4, -2t0 -1,5t06,

7. One toot of the equation 2x% - 19x%+54x-55=0 is 2/, find the
other roots.
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8. Solve the equation x— 23+ 3x2 - 4x - 4 = 0 being given that one root
is 2i.
9, Prove that x* - 4x— | =0 has three real roois.

10. The product of two of the roots of 2x* - 10x%+3x2+5x~2=01is 2,
By expressing the polynomial as the product of two quadratic factors, obtain
the roots of the equation.

1L If 14 /3 is a root of x*— 2x8— 22— 2x - 2 =0, complete the solution
of the equation.

12. Determine the number of real roots of the equation x* - Tx+2=0.

13. Given that one voot of 2x1+x3+5x%+4x-12=0 is a purely
imaginary complex number, find all the roots.

14. Prove that 25+ x® =1 has a real root between 0 and 1 and no other
real root.

15, By considering the turning-points of the function x®— 3bx+¢, show
that the equation x* - 3bx + ¢ —0 has three real roots, or only one, according
as 45% — ¢ i positive or ncgative.

16. One root of the equation P-5x4+12:%-12x%411x-7=0 is
2 -3 complete the solution,

17. Prove that the equation x? — 3x* — dx + 4 = 0 has three real roots and
find the integers between which they lie.

18, The product of two of the roots of x% — 1043 + 24x%+ 4x - 4 = 0 is equal
and opposite in sign to the product of the other two.  Express the polynomial
as a product of two quadratic factors and solve the equation.

19. If p=>g =0, prove that x*+ 22— px - g = has three real roots.

20, If p+ 0, prove that 3x*+ 4x® + p = 0 has two or no real roots according
as p<! or p>1.

Conditions for two equations to have a common root. If two equations
Pix)=0, P(x)=0 have a common root, they are both satisfied by a
particular vajue of x.

If one of the equations can be solved the necessary condition is
readily obtained by substituting the solutions obtained into the second
equation.

Ex. 6. Find the values of k for which the eguations 2x* - x2+4x+ £ =0,
xt— x—2 =10 have a root in common,

The equation x2-- x— 2 =0 has solutions x =2, - 1.
Substituting these values in turn into the second equation, we have

k=-20,7.
Two quadratic equations. Suppose the equations

ay X%+ byx+ ey =0,
X34 byx+¢,=0,

have a common root =, then

ay e+ by +0,=0,
ayat+ boz+ 0, =0,
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Treating these as linear equations in o® and =,

¢ have ! - 1
w - e — . - = = 1]
biea—baty @y~ a0, aha— by
1, ' — 2al
.. The common root, a=——12 —"EF,
’ ab,— by
bie,—bac
a.lld u2= 1-% =1
b, - oy

Eliminating =, the condition for a common root is
(@103 — ay01)? = (g — @b (oo — bacy).

Ex.7. Ifa+ xt=h2 32 =ay - bx =1, prove that a® + =1,
Eliminating y from the last two equations, we have

2
B4 (bx+l) _1,
ie, bty 2bx+ gt — a4 1=0.

Also gt 1<0.
. X -x 1
@) - - (@ -2+ 1) —~2b
Eliminating x, (@ - - 1R+ 4%t - D=0,
(@®+ b 1)1=0,
Loas+ b= 1.

A quadratic and a cubic equation. Suppose the equations

ax*+ b+ e x+d =0,
X%+ byx+ ¢ =0,

have a common root « 3 Q, then

a,63+ b+ e+ dy =0, T { )
a4 byt e, =0, .. (i

Mutltiplying (i} by a, and (ii) by @,« and subtracting gives
a2 by — @b+ wlaycpg—ape) —andy =0, . . (iid)

The common root « can now be eliminated between the two quadratic
equattons (i), (iii) as shown above.

Two cubic equations. Suppose the equations
a2+ b+ ox +dy =0,
g+ bex® +ogx+ dy =0,

have a common root «20, then
ayx® + byt + oo+ dy =0,
Qg -+ by 4 oy dy,=0.
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Eliminating «f,

oHaby—~ ab) + wl@ye,—apey) +ady—agd =0, . . (i)
Elitminating constant terms,
Xy dy— aydy) + o¥{bydy — body) + a{cydy —cady} =0,

ie, w(@ydy— apdy) + e{bydy — body) oy — ey =0, . . (iD)

The common root « can now be eliminated between the two quadratic
equations (i), ().

Ex. 8. If the equations ¥ + ax + b= 0, x* + cx+ d = 0 have a root in common,
show that this common root is {(b - o) — a®b3/{(h — P+ ala®+ d)}.

Let the common root be «, then

o+ aut+b=0, P« 1]
w+eatd="0. B (1]
Multiplying {i) by «, as «==0, and eliminating o4,
ac+alb-c)-d=0. P (11
Multiplying (i) by & and (iii} by « and subtracting,
affb-)-—ul*+d)-ab=0. . . . . . (iv)
Solving (i) and {iv) for &2, «,
ol - 1
—ablh— ) -d®rd) "athrdb-0 -alal+d) - B -oF
., Common root, « &b —c)-a'h

“h-Fra@rd)

Repeated roots of a polynomial equation. Suppose the equation
P(x)=0, where P(x) is a polynomial of degree greater than two, has a
root « repeated twice.

Then P(x) must have a factor (x— «)?

and P(x)={x— «}*0(x).
m P =(x— a}f2Q(x) + (x — 2} Q'(x)}.

L.e. x—a is a factor of P'(x), and consequently « is also a reot of the
equation P'(x)=0.

So a twice repeated root of P(x)=0 is also a root of P'(x)=0.

Extending this result,

If P(x)=0 has a root repeated » times then the equations P'(x)=0,
P'(x)=0, . . . have the same roof repeated r—1, r—2, . . . times.

Ex. 9, Find the condition that the equation x*+px*+gx®+ r=0, p,q,r=0,
has three equal roots.
PO)=x*+px®+gxdir,
P)=4x3+ 3px2+ 2gx,
PA(x)=12x2 + bpx + 29.
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The equations P'(x)= 0, P"(x}=0 will have a common rool, #, -+ Q.
oo del i Ipe+2g=0,
6o+ 3patg=0.
Solving for 2, &,

o —w 1
-3pg -8 -6p
Eliminating =, 324 =9p%—the required condition.

Repeated root, == - 4g/3p.

Solutions of equations with repeated roots, If P(x)-=0 has two equal
roots «, then P'(x)=0 has also a root «. The common root can be
found either

(i) by solving, if possible, P'(x)=0 and determining the common
root by trial; or

(ii} by finding the H.C.F, of P(x), P'(x); or
(iii) by using the fact that P(x)=0-P'(x) have a root in common.

Ex. 10. Solve the equation 12x*— 4x*— 5x+ 2 =0, given thai {wo rools are
equal.
P{x) =36x%-8x-5=(2x-1)(18x+5).
. The roots of P(x)=0 are 3» ~ 5

But P(%) = 0’

. x=1 is a common root of P(x}=0, P(x) =0 and consequently it is a
double root of the former.

By division, 123 - 422 - 55 +2=Qx - D*(3x + 2).
.". The roots of the given eguation are 4> 4+ - %-
Ex. 11. Prove that the equation xX*+px+g=0 has a double root if

4p? + 2788 =0,
Px)=x*+px+q,

Pilxy=32+p.
So the equations Xrpx+g=0,
334+ p=0,
have a common root, say «.
Hence Brpatg=0, . . . . . . . (@
JeZyp=0. . . . . . . . (i)

Multiplving (i) by 3 and (ii) by « and subtracting,
2po+ 3g =0y w=-3gf2p.
Substituting in (ii), gives the condition 4p®+ 27¢% = 0.
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EXAMPLES 7b

1. If a=b, find the condition that the equations x*+ax+b=0,
x%+ bx+ a=0 have a common root.

2, Solve the equation 12x% + 4x2 — 5x - 2 =0 given that it has a repeated
root.

3. For what values of & have the eguations 2x®-x%*+3x+4=0,
2x2—x -3 =0 a root in common?

4. Find the values of & for which the equation x®*+x® -8x+4k=0has a
repeated root and solve the equation in each case.

5. Find the condition that p*x%+gx+ 1~ 0, g*x% - px+ 1 = 0 should have
4 Toot in common.

6. Solve the equation 3x*+ 16x% + 244® - 16 =0 given that three roots
are equal,

7. What is the condition that x%-3xy - 10y? and a2+ 2Axy + &y* have
a common factor?

8. Solve theequation 27x° — 36x — 16 = 0, given that it has two equal roots.

9. Find the condition that 8x®-30xr+7=0, 2x¥*+ax+5-0 have a
comtmon root.
10. Find the condition that the two line pairs ax®+ 2Zhxy+B®=10,
a’x?+ 2k xy -+ byt = 0 have a common line.
11. Solve the eguation x*+3x*+3x®+ 8x+ 12 =0 given that it has two
equal roots.

12. Find the condition that the equations X*+ax®+8=0, ¥®+bxic~=0
have a root in common.

13. The equation 2x*+ 11x%+18x%+4x - 8= 0 has a root repeated three
times; find this root and solve the equation.

14. Show that the only real value of a for which the equations x* - 2x + g =0,
2x%- ax+1 =0 have a common reot is - 3.

15. Find the condition that the equation x*+ax*+6=0, »#0, has a
double root.

16, For what rational value of » have the equations 2x®*- 3x+2 =0,
2x%--3x% - 3x - 5=0 a common root?

17. Show that the equation 4x*—-4x%- 11x*+12x -3 =0 has a repeated
root and compiete its solution.

18. Find the condition that the equations ¥*+px+g=0, ¥ +rx+5=0
shall have a common root.

19. If p, g0, prove that the equation x*+ px®+ ¢ = 0 cannot have a root
repeated three times.

20. If the equation x¥+pxt+ gx+r="0 has a root repeated three times,
show that the value of this root is - 3g/dp.
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Relations between the roots and coefficients of an equation
Cubic equation. Let the equation

a+bx®+cex+d=0,
have roots «, B, v.
Then
ax®+bxt+ cx+d=alx— «)(x— B)(x—v),
=g{x® — x¥a+ B+y)+ x(By +ya-+ aB)— afy).
Comparing coefficients,
a+ Bty = —bfa, }

By4yataf = c¢ja,
wBy = —dja.

Ex. 12. If o, &, v are the roots of x*-2x*+x—6=0, find the values of
() o+ PRy (i) o+ PR

We have a+P+y=2; fy+ya+ufi=l; afy=0
Lot BR R =(at B9t - 2By +ya + «f)
=4-2=12,

Also e+ B3 +93 - 3aBy=(a+ B+yMHal+ B4yt - By -ya- afh
S Byt - 18 =2{2- 1),
o3+ B2 +45 =20.

Application to the solution of symmetrical simultaneous equations in
three unknowns. Equations of the form
xty+tz=a,
X2+t z2=h,
x*+pP4zd=c,
can be solved by deriving the values of yz+zx+ xy and xyz and noting
that x, y, z are the roots of the cubic equation

E—-xryt+z)ti(yz+zx+xy)—xyz=0.

This methed also applies to equations which are such that the values
of x- y+z, yz+zx+xy and xyz can be obtained.

Ex. 13. Solve the equations x +y+2=3, X®+ 3+ 22=29, 234+ )%+ 28 =45,

We have yz+zx+xy=Hx+p+ 20 - (%4 2 + 29}
=-10.

Also AP+ 8- 3xyz=(x+y+ 206t +y%+ 2 - yz - 2x - xy),
ie. Ixy: =45 - 3029+ 10)
xyzr=—24,
‘. X, ¥, Z are the roois of the equation
#-32-1v1+24=0 . . . . . . (i}



152 THEORY OF EQUATIONS
By trial, one soiution is r =2 and by division
3210+ 24=0-rP-1-12)
=1 — 2){t - 4}z + 3).
v» The roots of (i) are - 3, 2, 4, and hence x, 3, z have the values - 3,2, 4
in any order.

Quartic equation. Eet the roots of

acd+bx3+exrdet+e=0,
be ) B, ¥s 8.

Then ax'+&x*+ext+drte=alx—a)(x— Px—y)(x—8)
sa{xt— X e+ ¥ af — xJafy + ubys},
where Ja=a+pry-i§,
2aB=aP-+ wy+aB -+ fy-+ BE+y8,
Zaﬁy-—— afy - a3+ apd+ fys,
Comparing coecfficients,

2 =—bla,
2a8 = ¢fa, l
Z“ﬂ')’ = _d'[a’ i
afyd = efa. |

Ex, M. If the equation x* - px*+gx - ¥ =0 has three equal roets prove that
() p° =12r; (i) 9% = 32pr.
Let the roots be «, «, o, B.

Then Ja+f =0 B=-3a A ()]

et et aftroaltaftaf=—p; 3el+3af=-p. .. (i)

o+ o®B+alftalf= —g; 43— -q. R (1))

a*B= -y, B=-r. . . (iv)
From (i), (ii), p=6at;
from (i), (iv), r=3at;
from (i}, (iii}, g=8a%,

S pE=36ut=12r; 9g%=9.64a®=32pr.

Equation of the nth degree. Let the roots of the equation
G+ @ Xt g3+ | .. +a,=0,
be oy, gg, %3 . . . g

Then using the method as in the cases of the cubic and quartic
equations it follows that

2“1= —aylag; Em==as/ao; Duapuy= —afty . . .
ayay o .. oag={—D"ay/a,.
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Sums of powers of roots of an eguation, A method of relating the
sums of powers of the roots of a given equation is illustrated in the
following examples.

Ex. 15. If , B are the roots of x*— 2x— 1 = 0 and 5, represents o + B, n>>2,
prave that 5 — 25— — Sa—g =0. Hence evaluate (i) «*+ B3: (i) b+ (5,

As u is a root,

at-2a-1=0
Clearly « #0 and we can multiply throughout by =" % and obtain
:x."-za.""l— #-2 _ 0

Similarly, Br o282 1 prto Q.
oot ﬁ"—2(0;“'1-}-&“_1}—(&“‘2-}-{3“"}=0,
or Sa—2Sn—y—Sn—g=0 . . . . . . @
Now s =atB=2 s=altfi=6.
But 55— 25— 5 =0,
o s=12+2=14.
Also, using (i}, 5q=285+ S =34;
55 =2§4+ss =82.

o+ Bl =gy =14; of 4 B =35, =82
Ex. 16. The roots of the equation x* —px —g=0are a, B,y prove:

(1) o+ 347 =2p; (i) od+ P4y =g
(i) 6o+ B5 +9°) = 5(a® + B+ + BEyR).
We have a+t+B+y=0; Pytyatap=-p; afy=q

. o pRpyt=(at B y)E - 2By +yot+«f)=2p.
Substituting x =, B, y successively in the given equation and adding,
(a*+ @495 - ploc+ B+y)-3g=0,
S+ Pyt =3q.
Also o, B, y are roots of the equation
X5 - px3—gx?=0.
. a5t BE+yS - plad+ 83497 — glad + BA 498 =0,
18 o + B8+ 8 =5pq.
. 6{65 4 B8 +y%) = 30pg =5(ad + B8 + 7Nt + BE+yt),

EXAMPLES 7c

L. If «, B, and y are the roots of the equation B-3x+1=0, find the
valuesof: (i) o®+BE+y% () &P+ B +9% (i) Y+ 1/B+ 1/

2. Soive the equation x®— 7x*+36~=0 given that one root is double
another.

3, If «, B, v are the roots of x*=px+g, prove that «®+ P+t =3afy.

4. Solve the equation 423+ 162 — 19x - 76 =0 given that two of its roots
are equal but opposite in siga.
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5. If «, £ are the roots of x2-3x-1=0, find the values of: (i} a®+ 3;
(i) =5+ 85,
6. Solve the equation 24x3~ 14x*— 63x+45 = 0 given that one root is
double another,
7. If e, B, y, 8 are the roots of x*—3x%—x+2=0, find the values of;
@ e+ P42+ 3% (i) Y+ 1/B+1/p+1/8
8. With the data of the previous example, prove that Y a® —33 a2+ Ja- 8§
and deduce the value of Db,
9. Find the egunation whose roots are the squares of the roots of the
equation 35— 4x3+x-1=0.
10. Solve the equation 12x%— 35x® + 33x— 10 =0 given that iwo roots are
in the ratio 2: 3.
11. Solve the equation 8x® + 36x% + 22x - 21 = 0 given that the roots are in
arithmetical progression,
12. If , B, y are the roots of the equation 2x® - 3x%+ 2x — 8 =0 calculate
the values of: {D) (=+ DB+ Dy + 1) Gi) (B+y)ly+ «)(at+B)
13. If «, B, y are the roots of the equation x®+ 3ax - b =0, prove that
{x - B)«~4) =3+ a}.
14. Solve the equation 4x4+20x3— 722 - 32x+ 15 =0 given that three of
the roots are in the ratios 1:2: - 3.
18, Solve the simultaneous equations:

(i) x+ty+z= 1, i) x+y+zr= 1, (i) x+y+z=-2,
yztzx+xy =-4, xLyiyat - 29, ¥XiyE+t = 6,
xpz = -4, xyz = - 24, Bry+zd =-8

16. Solve the equation 2x*— x®-Tx%- 5x-1=0 given that one root is
double another.

17. Find the sum of the fifth powers of the roots of the equation
»¥-px—g=0.

18. Given that one root of the equation x®-+ 2ax2— b =0 equals the sum
of the other two, prove that a¥=5.

19, If the roots of the equation x®+px?+gx+r=0 are in geometrical
progression, prove that rpP=g®.

20. From the peint Q(2,0) on the curve y=x*>-4x2+7x-6 a line is
drawn to touch the curve at P; find the coordinates of P.

21, Solve the simultaneous equations a®+ b2+ ¢ =14, be+ca+ab= -5,
abe =6,

22, If u, B,y are the roots of the equation x% + ax®+ b= 0, find the value of
(o — Py) B2 - ye){y? - «f) in terms of g, b

23, If «, B, ¥ are the roots of the equation x*+px+¢=0, form the
equations whose roots are: (i) a+ B, B+y,v+a; (i) 2¥+ B3 PPy p2+ o

24. If one root of the equation x¥ + ax + b=0 is twice the difference of the
other two, prove that one root is 138/3a.

25, Solve the equation 4x* - 4x3 - 2tx*+ 11x+ 10=0 given that its roots
are in arithmetical progression.
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26. 1f the points {r,, 1,3, (f2, £°), (15, £5°) on the curve y =x* lie on a straight
line y —mx+¢, prove that £;+t,+# =0, Deduce that the tangent to the
curve at the point (4, %) meets the curve again at the point (—2r, - 8/%).

27. A point P on the curve ap*=x3 is given parametically in the form
(at?, af*); if the points with parameters 4,, t,, 1, are collinear, prove that
1/t; + 1/ts + 1/t = 0 and deduce that the tangent at the point P meets the curve
again at the point (ar®, — {as%).

Transformation of equations. It is often useful to transform a given
equation into another whose roots are related in some simple way to
those of the original equation. Some important cases are dealt with
below.

() Roots increased or decreased by a consiant amount.  Suppose the
roots of P(x)=0 are to be increased by 4.
Write y=x+h; ie x=y—~h
The transformed equation is
P(y—k)=0.
This iype of transformation is frequently used to simplify a given
equation by removing an assigned term from it.

Ex. 17. Find the equation whose roots arc those of x*+ax®+bx+c=0
increased by h.  Hence by suitable choice of h reduce the equation 1o the form
X+px+qg=0

Substituting y=x+h, ie x=y-h

(y-FPraly-mP+8y-m+ec=0,
¥4 yHa - 3+ YR - 2ah+ b)Y~ BB+ akt - bh+ c=0.
Choosing k =14, the equation reduces to
2R+ 99(3b - a®y + 2a* — Sab + 27c =0,
which is of the required form.

(ii} Roots multiplied by a giver quantity. Suppose the roots of
P(x}=0 are to be multiplied by &.

Write y=kx; ie. x=yfk.

The transformed equation is

P(yfk)=0.

Ex. 18, Find the equation whose roots are ten times the roots of the equation
B-2x+1=0,

Writing ¥ =10x; le. x=y/k0,

/1003 - Hy/10)+ 1=0

or ¥ - 200p + 1000 =0.
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(iii) Reciprocal roots. The equation whose roofs are the reciprocals
of the roots of P(x)=0 is obtained by writing

y=1lix: Le x=1l/y.

Required equation is P(1/»n=0,

Ex. 19, If the roots of the equation 2x*-3x*+4x®- T~ 0 are w, B, 9, 3,
prove that 31 /a =0 and obtain the value of 31/d%.

The equation with roots 1/«, /8, 1y, 1/5 is

1Y (12, (1Y
DR AR O
i.e. Tyt -4yi L 3w~ 20,
2]}a=0.
Also St =(S1/al* - 25 1/ap,

=0-2(-%)

Miscellaneous transformations. Further examples of transformations
are gi\_ren in the following examples.

Ex. 20, The roots of the equation ¥~ ax¥+ bx—c=0 agre w, B, V.
Form the equation whose roots are p+vy, ¥+ «, a+ B and show that
(B+yNy+ eHe+By=ab-c.
Since a+ B+ =q, the roots of the required equation are
a-«, a-§, a-vy.
Hence we can write y=a-x; ie x=a-y.
Required equation is
(a—y) —ala- )+ bla~)y) - ¢c=0,
or W20 (B By +e-ab=0.
Product of roots =(E + ¥}y + eMa+ B)=ab-c.

Ex. 2L If «, B, y are the roots of the equation x*-2x+3 =0, form the
equations whose roots are (i) o, %, o2 (it} Qyfa, va/B, «Bfy.

(i) Write y=x2 ie. x=+y
Required equation is (VIE=24/3+3=0,
Vy-2)=-3,
Squaring wWy-2=9,
ie. P 4ytedy-9-0.

(ii) As aPy =~ 3, the given roots are - 3/a%, — 3/p2, - 3t
Write y=-3/x% le a=+/(-3).
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Required equaltion is
{03 - 24/(- 3/ +3=0,
3
«/(—3,’)'){ ;—2}--3.

. 3(9 12
s gyt —+4r=0,
Squaring y{y’ y }
i.e. W44+ 129+ 9=0,

EXAMPLES 7d

1. Form the equation whose roots are each one less than those of the
equation x*-3x+1=0.

2. If &, B, y are the roots of the equation x% - 2x* =1, form the equations
with roots: (i) 2«, 28, 2y; (i) - =% — @, ~y; (i) /e, 1/B, 1y

3, Form the eguation whose roots are the reciprocals of the roots of the
equation x* - 2x3+x¥—3=0; deduce that the sum of the reciprocals of the
roots of the original equation is zero.

4. Form the equation whose roots exceed by 2 the roots of the equation
x4+ 6x-2=0,

5. Find the equation whose roots are the squares of the roots of
Mrxd+ 23+ x+1=0.

6, If «, B, y, 3 are the roots of 2x*— x* - 3x%4 5x -1 =0, find the value
of 21 [a2,

7. ¥ «, §, y are the roots of x¥— 3x+ 3 =0, find the equation with roots
20+ B+y, 2B +y+ «, 2y+ «+ B and deduce the value of

Qa+B+y)2B+p+ a}2y+a+B)

B. With the data of the previous question, form the equation with roots
By, ya, «f.

9. Increase the roots of the equation x*+dx*-7x2-22x+24 -0 by 1,
and hence solve the equation.

10. Given that a, 8, y are the roots of the equation x*+ 3bx+ ¢ = 0, form
the equation whose roots are («— 1%, (- 104, {y- 1%

11. Increase the roots of the equation x¥ + 6x%+9x+ 4 = 0 by a quantity &
and by choice of 4 reduce the equation to the form Wipr+g=10.

12. Apply the transformation x —ay + b to the equation

8%+ 36x2+40x+ 12=0

and by choice of the values of a, b reduce the equation to the form
Prpy+q=0.

13, If e, B, 4, 3 are the roots of x*+ax+b =0, find the equation with
roots (1 — «)/a, {1 - BY/B, (1 -y)fy, (1 -3)/3.

14, If x, B, v are the roots of x*+x¥-3x - 4=0, form the equation with
roots o(B +v), Bly + o), p{x+P).
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15, With the data of the previous question, form the equation with roots
«f(B+v), By + =), y/(=+ B) and deduce the value of 3 u2/(B+y)%

16. If o, 8, v, 8 are the roots of x*+ax®+bx+c=0, find the value of
(+B+y)e+ B+ 8 (a+y+ (B +y+3),

17. i o, B, 4 arc the roots of the equation x%+ax®+5 =0, form the
equation with roots 1 -y, 1 —pz, 1 - «B.

18. If «, B, v are the roots of the equation x¥+px®+¢q—0, prove that
By = 2a)y+ o— 280+ B -2y)=2p3 + 27q.

19. if «, B, y are the roots of x* - 2x%+4x - 5=0, express yo -+ off as a
function of « alone, and hence form the equation with roets, ya+ xf,

af & By, By -y

20. Prove that the roots of the equation x® + (96 - 3a%)x - 2a® + 9ab - 27c =0
are B+y-2», v+a-28, wt+p-2y, where & B, ¥ are the roots of
Braxtbx+e=0.

MISCELLANEOQUS EXAMPLES

1. If the roots of the equation x*+ 4p%x + ¢* = 0 are the cubes of the roots
of the equation x4 px+ g =0, prove that p+g= 0,

2. Solve the equation 2x® - 7x? - 32x - 55 =0, given that 3-2+/5 is one
root.

A, Prove that 2x% - 7x%— 12x + 45 =0 has a repeated root and solve the
equation,

4. if flxy=x+3x%— 1552 — 19x+ 13 obtain the signs of f{ - oo), f{~2),
S0, f(1), f(+ co) and deduce that the equation f(x) = 0 has 4 real roots.

5. If f(x) is a polynomial and f{z) =f(2) =0, prove that (x - a)® is a factor
of f(x). Solve the equation x*—4a%x+ 30 ={.

6. If the equations ax®*+3x-1=0, 2x*- x -1 =0 have a common root,
find the values of a.

7. Solve the equation 3x%— 7x®+ 17x - 5 =0 given that one root is 1 - 2},

8. Prove that the equation 4x® - 9x% - 12x~2 =0 has 3 real roots,

9. If p, 4 are the roots of the equation x®+ ax +b=0and r, s the roots of
the equation x%+ cx +d=0, find the equation with roots pr+gs, ps+gr.

10. If «, B, v are the roots of the equation 2x® - x®+x ~2=0, find the
values of: (i) o+ B%+9%; (i) «®+B9+9% QD) a¥+ post
11. Find the conditicn that the equation x¥+px?+4=0 has two equal

TOOS.

12. Solve the equation 12x*+ 16x%-27x—-36=0 given that the sum of
two roots is zero.

13, Given that the sum of the reciprocals of two of the roots of the
equation 6x% - 11x2- 225 + 12 =0 is equal to 572, solve the equation,
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14. By considering maximum and¢ minimum values of the function
f(x)=2x+ 8x + 7, show that the equation f(x) = 0 has no real roots.

15. If o, £,y are the roots of the equation 2%+ px + g = 0, form the equation
with roots B+y—ca, y+a—p, a+p-y.

16. Find the condition that the equations x¥+dyx + ¢, =0, 3%+ box + ¢y =0
may have a common root.

17. Solve the equations x+y+z=0; x®+)*+z0=42; xyz=20,

18. Prove that the equation x3+ 3x - 1 = 0 has only one real root, and find
the two integers between which this root lies.

19. Solve the equation x%+4x3+5x%+4x+4 =0 given that two of the
roots are equal.

20. For what values of X have the equations 4x?+3x - 3=0,3x%+ 2x -2.=0
a common root?

21. If «, B, 7 are the roots of the equation x*-3x*+2x - 5=0, find the
value of (= + BYB +y )y + ).

22, Solve the equation 2dx? - 14x?— 63x+45 =0 given that one root is
double another.

23, If «, B, y are the roots of the equation x*~ 3ax®+ b, find the values of
Emﬂ and Za5.
24. Solve the equations:
() x+y+z=2, 22+y}+22=14, xyz=-4.
(i) x+y+2=18, 22+2+22=110, x(y+z2)=65.
25, Find the condition that the equations ax® +bx+¢=0, cx*+ bx?+a=10
may have & common root.

26. If the equation 4x® - ax®+ bx + 175 = 0 has a repeated root x =35, find
the values of & and &.

27. Solve the equation x®+4x*+2x*—8x - 8=0 given that it has two
equal roots.

28. If P(x)=3x4 - 8x® - 6x%+ 24x + a, determine the roots of the equation
P{x)=90. Hence determine the range of values of a for which the equation
P(x) = 0 has four real unequal roots.

29, Solve the equation x%+ x?— 4x+2 =0 given that one root is i+/2.

30. If the roots of x*+ax*+bx+e=0 are in arithmetical progression,
prove that 2a®—9ab+27¢ = 0.

31, Solve the equations
X+y+z=-—xyz, yr+zx+xy=-1,
(1 + 231 + 81 +z5 =20,
32. Given that two of the roots of the equation
45x71 - 54x* - 9Bx3 - 150x - 75=0

are equal in numerical value but opposite in sign, complete the solution of
the equation,
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33. Form the cubic equation whose roots x, y, z satisly the conditions
x+y+z=0,x24 )2+ 28=h,x¥+ P+ z%=c. Hence find a relation connecting
b and ¢ if two of x, ¥, z are equal.

34, The equation x* + px +g~=0 has roots =, f, y; find the equation whose
roots are (B—9)2, {(y— o), (x— £. Hence, or otherwise, deduce the con-
dition for the equation ayx®+ 3g,x+ @, = O to have a pair of equal roots, in
the form aua,® + 4a,2 = 0.

35. Solve the equation 81x%+ 54x%— 189x%— 66x + 40 = O given that the
roots are in arithmetical progression.

36. Find the conditions for the roots &, B, v of the equation

B-gibx-c=0
to be in: (i) A.P.; (i) G.P.

If the roots are not in A.P. and if # +2, -+ 3,y + % are in G.P., prove that
3 is given by a cubic equation,

37. If ax®+ 36x%+ 3ex+d=0 has two equal roots, prove that they are
equal to $(bc — ad)f{ac - b3).

38. Find the values of a and & such that the equations

Aiax®+11x+6=0, xXE+bx®+14x+8=0
have two roots in common.
39, Prove that the equation x4+ 4px3+g =0 has no real roots if g>pt.

40. Factorise A=jl 1 1
x By
052 ‘3! yz

Determine the value of A? in terms of a and & if «, B,  are the roots of the
equation X +ax+b=10,




CHAPTER YIII

THE CONICS. MISCELLANEOUS PROBLEMS

Chord of contact of tangents from a point fo
a copic
The parabola  y*=dax.

Let the points of contact of tangents from
P(xy, y1) be A(x;, By), B(zy, By)
Equation of tangent at A is

By 2a(x t+ &y);

as this passes through P, Fia. 70.
ybi=2a(xtey) . . o o . o (D)
Similarly, as the tangent at B passes through P,
yBe=2a(x,+ ) . . . . . . (i)
The equations (i) and (ii) show that the line
Yoy = 2a(x; +x)

passes through 4 and B.
Hence the equation of the chord of contact A8 s
=28(X + X
The above method applies equally well in the cases of the ellipse and
hyperbola with the following I‘CSUHS'
%
The ellipse —ﬂ ﬁg

Chord of contact of tangents from (xy, J4) s

XX ¥
= + 2 B2 =1.

x& 2
The hyperbola 2 %s =1.

Chord of contact of ta.ngents from (x5, 1) 18

a’ 33:‘1 =1
N.B. The chord of contact of tangents from a point P to a conic is
the polar of P with respect to the conic.
P is the pole of the chord of contact,
161



162 THE CONICS

Ex. 1. Find the equation of the chord af contact of tangents from (- 3,2} 1o
the hyperbola 4x% - 9yt =36.

Chord of contact is 4(- 3 - 92y =36,
ie 2x+3y+6=0.

Ex, 2. Find the coordinates of the point of intersection of tangents to the
parabela Y2 ~4ax drawn at the ends of the chord Ix + my =1,

Let the point of intersection of the tangents be (x;, »,).
Then the chord of contact has the equation

yyp=2a(x+ x;}. o (1]
But the given equation of the chord of contact is
+my=1. . , . ., . . . {iD
g and iy, 270 2
Comparing (i} and (ii), 7= =21

Lxy =175 yy=-2amfl.

Paraliel chords of a conic

The parabola yi=4ax,
Let the equation of the system. of parallel chords be
y=mx-+3,

where m is constant and » a parameter.
Then the ordinates y,, y, of the ends of a chord of the system are the

roots of the equation
y=dg ( ¥ "_l)

m
or, myt —day + 4ar=10.

Hence the ordinate of the mid-point of the chord
=4{y; + y3)= 2a/m=constant.

.. The locus of the mid-points of the system of parallel chords is

the diameter
¥ =2a/m,

] X3y
The ellipse o T I.
With the equation of the system of parallel chords as before, it

follows that the x-coordinates, x,, x,, of the ends of a chord are the

roots of the equation
_}'(mx—Hn)2

e % 1.
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. Hence the coordinates of the mid-point of the chord are

X = 4(x,+ x0)= = maH/(am + b%;
Y=mX-+2 =bu/(a®m%+ b?).
X md
Y B

i.e. the locus of the mid-points of the system of parallel chords is the
diameter

The hyperbola Xy 1

Following the method used in the case of the ellipse, the locus of the
mid-points of a system of paraliel chords is found to be the diameter

bﬂ

Y = am ™

Equation of a chord with a given mid-point
The parabola y=4dax.
Let the midepoint of the chord be (x, ).
Then if m is the gradient of the chord,

=28, ie m=2—a-
¥ m* = 7

.. Equation of the chord is
' 2a ¥’
y=y=5 {x—x')
ie Yiy—y)=2a(x-x')
The ellipse +£s— .
Let the mid-point of the chord be (x', ).
Then if m is the gradient of the chord,

. I '

y=—a“’,—;lx; le m-—"a’y
.. Equation of the chord is
b B
y-y= ag—),(x x")

. xX(x—x) , ¥yiy—y
ie. G[n‘l )-+Y("b,")zo.
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2
The hyperbola iﬁ—i_’:_ L.

As before, the equation of the chord with mid-point (x', y) is

X(x—-x} YO—¥) 4
82 bﬂ *

Ex. 3. Find the coordinates of the point of intersection of tangents to the
ellipse B2x+ aty? —a®b® at the ends of the chord with mid-peint (=, B).

Equation of the chord is
BPalx - o)+ &Ry - B)=0, P 1]

Let the point of intersection of the tangents at the ends of the chord be
(h, k).
Then the equation of the chord of contact is
bhx + aky =abt. O (11
As (i) and (ii) represent the same line,
b a% ath?

atha e

Hence, e O Ll

Ex. 4. Find the locus of the mid-points of chords of the hyperbola 5% - 4y =|
which pass through the point (1, 2).

Let the mid-point of a chord be (x’, ).
Then the equation of the chord is
X(e-x)-4y(y-y)=0.
As the chord passes through the point (1, 2),
x(1-x)-4y(2-y7=0.
Hence the locus of the mid-point is the curve
-4 -xi8y=0.

EXAMPLES %a

In each of the examples 1-6, obtain the equation of the chord of contact
of tangents drawn from the point stated to the given conic:

1. (-1,0); y*=2x. 2. (3.4); x*+4d2—4.
3. (-1, x2-22 =2 4. (-2,4) y®=38x.
5. (2,5): 2x3+4y8=3, 6 (-3, 1); 3x%—pf=].

7. Show that the equation of the chord of contact of tangents to the
ellipse H%x% + aty? =g¥h? from the point (a, b) is bx + ay —gbh,
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8. Find the equation of the chord of contact of tangents drawn from a
point {—a, #) on the directrix to the parabola 3%~ 4ax. Prove that the
chord of contact passes through the focus.

In each of the examples 9-14, find the coordinates of the point of inter-
section of tangents drawn to the given conic at the ends of the chord stated:

9. A—4x; y-x+1=0. 10. ’i;+’;=1; x+2y=2.
1. 233-32=6; y-2x=1. 12, x¥-y2=4; 3x-2p—=2
13, x4+ 2% =1; 3x+2y=1. 14. x2+8By=0; y+x+2=0,

15. Find the coordinates of the point of intersection of tangents drawn to
the hyperbola x2 - 2)? - 4 at the ends of the chord whose mid-pointis (- 3, 1).

16. Find the locus of the mid-points of chords of the ellipse X%+ 4% 1
which pass through the point (1, 1).

17, Prove that the locus of the mid-points of the system of parallel chords
y=mx+x of the rectangular hyperbola xy=¢? is the diameter y + nix=0.

18. Prove that the equation of the chord of the rectangular hyperbola
xy =c* with mid-point {x’, ¥} is x{y -~y +)(x - xI=0.

1%. Tangents are drawn from a point P to an eltipse, centre €. If the
chord of contact is AB, show that CP bisecis A8.

20, If the chord of contact of a vatiable point P with respect to a parabola
passes through 2 fixed point, prove that the Iocus of P is a straight line.

21, Prove that the locus of the mid-points of chords of the rectangular
hyperbola xy —c? which pass through a fixed point is a rectangular hyperbola.

22, Prove that the chord of contact of tangents drawn from any point on
the line y - 2x - 1 = 0 to the hyperbola x% ~ 2y* = 4 pass through a fixed point
and find the coordinates of this point.

Normsls to a conic

The paraboln Yi=dax.

The equation of the normal at the point (a¢?, 2af) is

y+ix=2at+ar,

If this normat passes through a given point {x,, y,), on substitution
of these coordinates we get

at+Qa-xy—y=0. . . . . . ()
This is a cubic equation in t whose roots 1y, ,, {; are the parameters
of the feet of the normals from (xy, y,) to the parabola.
So, in general, three normals can be drawn from a given point to a
parabola.
Also as Lttt +1,=0,
the sum of the parameters of the feet of the three mormals is zero and

conversely, if the sum of the parameters of three points on a parabola is
zero, the normals at these points are concurrent.
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Ex. 5. Prove that the normals at the ends of a system of parallel chords of
a parabola intersect on a fixed normal 1o the parabola.

As the locus of the mid-points of a system of paraliel chords of a parabola
is @ Yine parallel to the axis, the sum of the ordinates of the ends of each chord
is constant.

So if the parameters of the ends of a chord are ¢, /£,

2ot + 2oty — constant; ie. ¢+ fp=constant.

If the normals at the points ¢, £, meet at P and the parameter of the foot

of the third normal through P is 7,,
f+ ittty =0,

Hence g = constant,

and therefore P lies on a fixed normal. '

] 2
The ellipse d +';2 1

The equation of the normal at the point (a cos ¢, b sin ¢) is

ax by o ;s
cos¢ sing =¥,

This normal passes through a given point (x,, y) if

ax, by T
cos ¢ sing al =Bt

-
Writing tanié=4¢ then siné‘lits cos ¢ = :+:s’

ax(1+18) by (1+£%)_ 2
and g Ay = e b2,

Le. by t'+2ax, +a*— 003+ 2ax, —a + b — by, =0. . {ii)

This is a quartic equation whose rools t,, 1y, tg, f, are the parameters
of the feet of the normals which can be drawn from the point (x;, y,)
to the ellipse.

Hence, in general, four normals can be drawn from a given point to
an ellipse.

From equation (ii) Ligtsti=-1,
and 2t11‘2 =
2‘1 hlats
But tan M, + g+ ey +H )= er P
and 1=ty + tytgtsty =0,

. Yy + byt byt =an odd muliiple of $r.

Le. if the normals at _four points {acos ¢y, bsin &), r=1,2, 3, 4, o
an ellipse are concurrent, then ¢, +dy+ds+ dy=an odd multiple of =.
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Ex, 6. Show that the feet of the four normals drawn from a given point to
an eliipse lie on a rectangular Ryperbola.

The normal at the point P(a cos $, b sin $) passes through the given point
(e, p) if

ax, by . i
m Sin¢_a= ®o.o. . ... (l)

If the coordinates of P are written as (x, »),

.—_'f‘ i _—_Z.
cos ¢ = sin ¢ 5

2
Substitating in (i), = b?’.; B,
ie, (e - bBxy+ b¥yyx — axyy =0,

This, the equation of the locus of P, represents a rectangular hyperbola as
it can be exprassed in the form k(x — «}(p — ) = constant.

P
The hyperbola 2R 1.
The equation of the normal at the point (a sec ¢, btan §) is

I A Y
sec¢+tanqb a* - b,
This normal passes through a given point (x,, y,) if

axy by, 24 R
_—sec¢+_m—tan¢ az+bE,

Writing tan 3¢=1¢; then

REY. x
¢_ﬁ’ tan |#--th’,

ax(1-t% (01— _ 4 14
and Tl_-t‘-n—-* + 2f 43 +b .
Le. By, 2(ax, + a2+ e+ 2at + b2 —axyt — by, =0.

Hence, as this is a quartic equation in 1, in general four normals can
be drawn from a given point to a hyperbola.

In a similar manner to the ellipse, it follows that if the normals at
the four points (asec ¢y, btandy), r=1,2,3,4, on a hyperbola are
concurrent,

then ¢yt P+ by + by = an odd mudtiple of =.
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The rectangwiar hyperbola  xy—c=
The equation of the normal at the point (ct, ¢/f) is
Bx—ty=c(t*~1).
This normal passes through a given point (x,, y,) if
Bx, —tyy=c(t* - 1),
i.e. ct'—x*+yt—e=10.

The roots ¢y, 1,, ta, 7, of this equation are the parameters of the feet
of the perpendiculars from the point {x;, ;) to the rectangular
hyperbola.

From the equation,

S1t,=0; ttott=—1.

Ex. 7. From any point P on the normal at a given point A of a rectangular
hyperbola the other three normals 1o the curve are drawn.  Show that the locts
of the centraid of the triangle formed by their feet is the diameter parallel 1o the
normal at A.

Let the curve be xy=c% A the point (¢7, c/T); P the point (x,, ).

Then the feet of the four normals from P are the roots of

ef-xBrpt-c=0, . . . . . .

One root is T; let the other roots be #4, Iy, 5.

The centroid of the triangle 1,45/, has coordinates

x=dclty +tgt-tey; F=de(lfty+ 1ty + Lt =1¢
Bat from (i), higtaT=— 15 Le. ty6te= - 1/T;
and fyty e+t + T+ L+ ) =0; e tafg 13, + ity — — Tty + ty +19).
oy =teTHt + 1+ 1)= T2,

Le. the locus of the centroid is the diameter y = T2x, which is parailel to the
normal at A4.

tatq+ gty + ity
Hitaly

EXAMPLES 8§b

1. Find the condition that the normal at the point (¢, 1/f) of the
rectangular hyperbola xy =1 passes through the crigin,

2. The normal at the point (2 cos &, sin &) of the ellipse x*+ 4)2 = 4 passes
through the point {0, —1). Prove that 1" - 654+ 6¢ — 1 = 0, where r=tan o
and deduce the coordinates of the points on the ellipse at which the normals
pass through the point (0, - 1).

J. Write down the equation of the normal to the parabola y®=4x at the
point (s, 2r) and deduce that only one real normal passes through the point
(2, 1). Also find the length of the perpendicular from this point to the curve.

4. The normal at the point (sec $, tan ) on the hyperbola x2—33=1
passes through the point (-3,2), prove that #-#+5i—1=0, where
t=tan3$. Deduce that, if ¢y, ¢, By, ¢, are the feet of the four normals
through { - 3, 2), then

tan 3¢, +tan §¢, + tan 1y + tan 3, =1,
tan ¢, tan 44, tan depy tan dep, = — 1.
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5. Find the equation of the only real normal of the parabola y*=38x
which passes through the peint (1, - 5).

6. Foor normals are drawn to the rectanguiar hyperbola xy—4 from a
point on the line x =2; if the feet of the normals have parameters #,, #, 13, 4,
establish the results: (D 3, —1; (D) Dtyp=0;  (iii) 1ytotaty~ - 1.

7. Find the equations of the three normals which can be drawn from the
point (9, 6) to the parabola y*=4dx,

8. Find the equation of the normal to the hyperbola b - a®2=a%*
at the point [La(z+ 1/#), 4b(¢ - 1/9] and deduce that in general four normals
pass through a given point.

9. If the normal to the parabola 32 =4ax at the point P(ap?, 2ap) cuis the
curve again at the point @ and the lines joining P, @ to the vertex are
perpendicular, prove that p? =2,

10, Prove that the sum of the parameters of the feet of the four
perpendiculars from a point on the y.axis to the rectangular hyperbola
x =cl, y=cft i3 zero.

11. Four normals are drawn to the ellipse x%a®+y%b%=1 from a point
on the line ax+ 42— b2 =0; if the eccentric angles of the feet of the normals
are ¢, Py, s, ¢, Drove that > tanié, = 0.

12. Show that two of the three normals from the point (Sa, 2a) to the
parabola y* =4ax coincide.

13. Prove that the normal to the rectangular hyperbola xy—c? at the
point Pler, ¢ff) meets the curve again at a point ¢ with coordinates
(- ¢/, e, 1f P is not on the axis of the curve, deduce that it is nearer the
origin than Q.

14, )f the feet of the normals to the parabola y*=4ax from the point
(3a, 0) on its axis are 4, B and the vertex O, find the equation of the chord A 8.

15. Find the coordinates of the feet of the normals which can be drawn
from the point (9a, 6a) to the parabola y®=4ax.

16. Taking the coordinates of a point on the hyperbola x%/a®— y4b* =1 as
[Rale+ 1/6), 15 — 1/1}], prove that the parameters #, 1, T, ¢, of the feet of
the normals from a point on the line ax+by=0 to the hyperbola are
connected by the relationships Y1, =0; 31,1,=0, fitatsty— — 1.

17. I{ Py, Py, Py, P, are the fect of the four normals from a point P to the .
rectangutat hyperbola xy —¢% and O is the origin, prove that OP? =3 OP%

18. P, ( are the points parameters 1,, 1, on the parabola y* =dax. [If the
normals at P, { meet at a point on the parabola, show that 44, =2,

19. Prove that the equation of the normal to the hyperbola x¥/a® - y3/b? =1
at (x’, ) is a®x/x’' + by [y’ =a®+ b5 Deduce that the feet of the four normals
which can be drawn from a given point lie on a rectangular hyperbola.

20. MNormals to the parabola y* =4ax from the point (3a, a) mect the curve
at points with abscissae x;, xp, Xz Show that x; + x5+ x5 =2a.

21. Show that the feet of the four normals to the ellipse x¥a? + y3/b% =1
from the point P lie on a rectzngular hyperbola which passes through P
and the centre of the ellipse and has asymptotes parallel to the axes of the
ellipse.
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22, Prove that three real normals cannot be drawn from a point (4, 0) on
the axis of the parabola 32 =4ax to the curve unless A>24. Find the area
of the triangle whose vertices are the feet of the three normals from the
point (3a, 0). )

Concyclic points on a comic. The following worked examples
illustrate the methods of procedure in dealing with problems involving
concyclic points on a conic.

Ex. 8. A circle cuts @ parabola ot points A, B, C, D; the tangents to the
parabela at A, B meet at T and those at C, D meet at V. Show that TV is
bisected by the axis of the parabola.

Take the equation of the parabola as y®=4ax and let the equation of the
circle be

B 2ex +2fy+e=0.
Any point (@2, 2ar} on the parabola lies on the circle if
@’ +4a%* + 2gat + 4fat+ ¢ = 0,
i.e. a4+ 2a(2a+ @)+ dfat+c =0, R )

The roots £, 1,, 25, 1, of this equation are the parameters of 4, B, C, D.
But the erdinates of the points of intersection 7, ¥ of the tangents to the
parabola at 4, B and at C, D are respectively a(s, + £,) and a(ry - £,).

From (i}, Hhttatrg+t=0; ie f{+t=~(y+1)

. The ordinates of T and V are equal in numerical value and opposite
in sign, and it follows that the axis, y = 0, bisects TV,

Ex. 9. The ellipse x2la® + y2[b* =1 is cut in four points A, B, C, D by the
concentric circle x*+ y2=7¢% b<<r<a. Prove that A, B, C, D are the ends
of two diameters of the ellipse equally inclined to the axes.

B P e
) 3

The equation

=N, S

al By

derived from the equations of the ellipse and the circle, is satisfied by the
coordinates of points common to the two curves,

Also the equation, being homogeneous in x, y, Tepresents a line pair
through the origin.

Hence 4, B, C, D lic on a line pair through the origin—i.e. on a pair of
diameters of the ellipse or the circle.

Also as the equation can be written y’(gi —é) =x=(rl=— ;‘z)’ it i1s of the
form By = £ Ax, and in consequence represents a line pair equally inclined
to the axes.

Ex, 10. P, Q, R, S are concyclic points on a rectangular hyperbola. If
PQ is a diameter of the curve, prove that the chords PR, PS are perpendicular.

Take the rectangular hyperbola as xy =c2 and the parameter of the points
PO R Sasty, —1y, 1y, 1y

Suppose the circle PO RS has the equation

2+ 2ex+2+k=0. . , . . . @D
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The parameters of P, @, R, S are the roots of the equation obtained by
substituting x =c#, y =c/f in equation (i).

i.e. the roots of Aty f—:+ 2gcr+2 ff +k=0,
or A 20+ R+ 2ot + ¢t =10,
.. Product of roots = - 18 =1. . . . . (i)

Now the gradients of chords PR, PS are - l/tyfs, — 1/tjts TESpectively,
hence by (ii), the chords are perpendicular,

EXAMPLES 8¢

1. Prove that the point (#%, ¢} lies on the circle x*+ - 10x+1 =0 if
#-9%+1=0 Deduce that the circle meets the parabola »® =x in four
real points which are such that the pair of chords defined by them are either
perpendicular to the axis of the parabola or equally inclined to it.

2. Find the equation whose roots are the parameters #,, o, 13, #4 Of the
common points of the rectangular hyperbola, x =1, y =1/t and the circle
B+y-2x+2y+1=0. Deduce the values of: @ Dt (i) Xite
Giiy Yhttay (V) fifafete

3. Taking the parametric coordinates of 2 point on the ellipse
2fa?+ 3262 =1 as [a(l - D1+, 266/(1+ M), find the equation whose
roots are the parameters £y, #,, fy, 7, of the points of intersection of the <llipse
and the circle x%+ y® =a® - b5

4. The points Alct,, eft)), Bler,, cfts), Clets, cfty) lie on the rectangular
hyperbola xy —~c¢® Find the coordinates of the point L in which the
circumcircle of triangle ABC cuts the hyperbola again.

5. Prove that, if the four points [% a(f-i—;l ) % b(r - ;)] f=ty, Iy, T3 Uy,
on the hyperbola x¥/a® - y2/5" =1 are concyclic, then fyfafyts=1.

6. The four concyclic peints A, B, C, D on the parabola y* = 4ax have
the coordinates (af?, 2a?), t=1,, t;, #5, ;. Prove that: (i) #;+ .= - {3+ 1y);
(ii} the line joining the mid-peoints of chords 48, CD is bisected by the axis
of the parabola.

7. Taking the coordinates of any peint on the ellipse x¥a®+ y2/b2 =1 as
[a(1 — &1 + ), 2b4/(1 + 15)] show that if the points with parameters £, t,, f5, £,
are concyclic, then Y1, = Yttty

8. The rectangular hyperbola xy =c? is cut by a circle in four points with
parameters I, fp, fa, 143 Prove that f,2,6¢, = 1. If the centre of the circle lies
on the asymptote x = @, prove also that Zﬁ =0,

9, Show that the coordinates of any point on the hyperbola
2%a? - y2b%=1 can be taken as [a(l+ £)/(1- %), 2br/{1 - 9]. Show also
that if the points with parameters r, f;, f;, f, are concyclic, then
Syt Dttty =0.

10, Four peoints P, (, R, S on a parabola are concyclic; if PQ is a focal
chord and PR is normal to the curve at P, prove that the axis divides @S in
the ratio 1: 3.
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11. A hyperbola is cul by a concentric circle in four points; prove that
these points are the ends of diameters equally inclined to the axes of the
hyperbola.

12. A circle touches a parabola at P and meets the curve again at { and R.
Show that the axis bisects the line joining P to the mid-point of the chord OR.

13. A circle cuts a rectangular hyperbola in the points P, Q, R, S.
Perpendicutars PP, Q) are drawn to one asymptote and perpendiculars
RR’, 85 to the other. Prove that PP . QQ'=RR’ . 55",

14, Two given points 4, B lie on the same branch of a rectangular
hyperbola, prove that two circles can be drawn through A and B to touch
the rectangular hyperbola at points P, @ which are at the ends of a diameter
of the curve.

General equation of a conic. Geometrically the conics are the curves
of intersection of a variable planc and a double cone; they have five
different forms:

the line pair; the circle; the ellipse; the hyperbola; the parabola.

Each of these conics has the property that it is met in two points,
real or imaginary, by a straight line, and consequently its equation
must be of the second degree.

Hence the most general equation of a conic is

ax®+ 2hxy+ bR+ 2gx +2fp4- =0,
This equation represents the different conics according to the
following conditions:
(i) if =5 and A =0, the conic is a circle;
(ii) if k% <Cab, the conic is an eflipse with the exception of the special
case (1);
(iif) if A*>ab, the conic is, in general, ¢ Ayperbola except when
A =|a h g|=0, when it is a line pair.
b
gfc
(iv) if a+b=0, and in consequence #*>>ab, the conic is a rectangular
hiyperbola or a perpendicular line pair—the latter requiring the
extra condition A=0,

(v) if k®=ab, the conic is, in general, a parabola.

Ex. 11. ldentify the following conics:
() 22+ 4xy+ 32— 1-0; ) 32— )2+ 2x -8y +1-0;
(iidy 9x®+ 6y + ¥+ 2x—-3=0; ) dx2+ 42 -Tx -8y -2=0.
(i) in this case /®<Cgb; .. an ellipsc.
(i) in this case a+b=0; .. a rectangular hyperbola (A =0).
(iif) in this case ® =gb; . a parabola.
{iv) in this case a=4; i=0; .. a circle.
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Systems of conics. Consider the equation
S+18'=0,

where §=0, $'=0 are the equations of two conics and % is a
parameter.

As S, S will be of the second degree, so will S+2aS’, hence
the equation represents a conic for all values of 3. Moreover, the
coordinates of a point common to =0 and 5 =0 will satisfy the
equation.

Hence the equation S+28'=0 represenis a system of conics passing
through the points of intersection of the conics =0, §'=0.

Ex. 12, Write down the equation of the system of conics passing through the
points of intersection of the ellipse 4x%+9y* =36 and the circle x2+ y* =6,
Find the equation of the conic of the sysiem which passes through the point
(0’ - ])-

Equation of the system of conics is
4x* + 92 - 36+ Mx2+ 2 -6)=0.
This equation is satisfied by the point (0, - 1) if
936+ —95)=0,
i.e. _ = EL
Hence the required conic has the eguation
7x2 - 18y% + 18=0 — a hyperbola.

System of conics passing through four given points. Let the four
given points be 4, B, C, D.

Then the line pairs BC, AD; CA, BD; AB, CD are members of
the system of conics passing through the four points.

Taking the first two pairs and writing the separate equations of the
lines BC, AD, CA, BD as L,=0, L,=0, L;=0, L,=0 respectively,
it follows that the equation of the required system can be expressed in

the form
L L, +2LeL, =0,

Ex. 13. Find the equation of the system of conics determined by the poinns
AQL, ), B(E, - 1), C(0,2), D2, 2).

The equations of AB, CD; BC, AD are respectively
x-1=0,y-2=0; y+3x-2=0,y-2x+2=0.
.. The equation of the system can be written
(r+3x-2Xy - 2x+ )+ Mx -1y -2)=0.
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Ex. 14. Prove that all conics passing through the vertices of a triangle ABC
and its orthocentre H are rectangular hyperbolae.

Simplify the problem by choosing 48 and
the altitude through C as coordinate axes
{Fig. 71).

Let A, B, C have coordinates {a, 0) (b, 0),
(0, ) respectively.

Then the equations of AB, CH; BC, AH
are

¥=0,x=0; ext+by-bec=0, bx-cy-ab=0,

Hence the equation of the system of conics
through A4, B, C, H is
{cx+ by - bebx — ey — ab) +axy =10,

As the coefficients of x® and »* are equal and opposite, the equation
represents a rectangular hyperbola, except of course when it gives the line
pairs BC, AH; CA, BH: AR, CH,

Special cases of the system S +38’'=0, Special cases arise when one
or both of the conics §=0, §'=0 degenerate into line pairs. In these
cases the separate lines will be expressed by equations L=0, M=0,
N=0, etc.

(i The equation S+ LM=0.

{a) This equation represents a system of conics passing through
the common poiats 4, B, C, D of the
conic Sand the lines L and M (Fig. 72).

(b If the lines L, M intersect at a point 4
on the conic S—i.c. points 4 and B
coincide, then the equation represents
a system of conics touching § at A and
passing through C and D.

{c)} If the fine L touches S at A—i.e. points
A and D coincide, then the equation
represents a system of comics touching § at A and passing
through B and C.

(d) If both L and M are tangents to S at 4, B respectively, the
equation represents a system of conics touching Sat 4 and B
—a case of double contact.

(e) If L is a tangent to § at 4 and M
also passes through A (Fig. 73}, three
of the points of intersection of the

conic and the line pair coincide in A s=0
and the equation represents a systemof ‘
conics passing through C and having M=0

three-point contact with S at 4, Fia. 73.
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(ii) The equation S+iL?=0,

Here we can imagine the line M=0 of the A
previous case to have coincided with the line
L=0 and the four points of intersection have 5=0
become two coincident pairs of points at o
A and D (Fig. 74). L=0

Hence the equation (i) represents a system FiG. 74.

of conics touching S at the ends of the
chord A D-—a case of double contact and equivalent to (i) (d) above.

Further special cases arise when § itself
is a line pair. For example, i L=0,

M =0, N={0are straight lines, the equation 7 B N=0
LM+aN2=(,

represents a system of conics touching

L and M at their points of intersection L=0 M=0

A, B with N (Fig. 75). Fic. 75.

Ex. 15. Tdentify the system of conics represented by the eqnation
x2al 4+ y4hE — 14+ Mx —aly - b)=0.

The lines x—a=0, y~b=0 are tangents to the ellipse x%a®+ y%bt =1 at
the ends A(a, 03, B0, § of the principal axes.

. The equation x%a?+)%/6% — 1 +2(x - a)(y - B)=0,

represents a system of conics touching the ellipse at A and B.

Ex. 16. Find the equation of the rectangular hyperbola which touches the
parabola y2 =4x at the ends of the chord 3x+y=6.

The equation of the system of conics touching the parabola ¥ —4x=0 at
the ends of the chord 3x+y-6=01is

Y-dx+MIx+y—6F=0

This equation represents a rectangular hyperbola if
1+9+2=0; ie »=-745

.. The equation of the rectangular hyperbola in the system is

yi-dx- f503x+y-632=0
or O+ Gxy - 92+ 4x - 12y + 36=0.
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EXAMPLES 3d

1. Identify the following conics:

(i) 3+ xy+y2=1; (i) 2x%— xp— yt=0;
(i) xy—2x - y=0; (iv) x2—xy—1%-2:-0;
V) At pP-2x+y=0; (v) xa* 4+ 2xp -y -x+y+1=0;

(vii} 3x2+ 2xyp+ 42 - 10x - 1By +28=0;
(viii) X%~ dxp-+dy? - 24x - 2y=0,
2. Find the values of X for which the equation
2 P -1 201y - XMy + x) =0
represents: (i) a rectangular hyperbola; (i) a parabola.
3, Prove that for al! values of the parameter p the equation
{ax+ by — IMbx-ay+1)+mlx - yNx + y}=0
represents 4 rectangular hyperbola.

4. Find the equation of the conic which passes through the points of
intersection of the conics 22+ 2)8 =1, 2xy=1 and also through the point
(3, 1). Identify the conic.

%, Find the equation of the conic which passes through the points of
intersection of the circle x2+)t-4x+2y+1=0 and the fines y+1=0,
¥+ 3=0 and also through the origin.

6. Identify the following systems of conics:

() 2+ - 1+rxy-1)=0;

(i) x4+ 72 - 1+Mx?+)2-3)=0;
(iii) 3% - 8x +alx+ ¥ - 12y - x)=0;
(iv) x2- 32— 1 +XM(x%/8+ 42— 1) =0;

() G-y + Dxty-1D+rep=0;

(vi) 4%+ 9p% — 364+ 2(Ox2+ 4% - 36) =0,

7. Find the equation of the rectangular hyperbola passing through the
common points of the parabola y® - 2x =0 and. the circle x2+32—8x+7=0.

8. Eliminate 7 between the equations x=s tayf+ by, y =¥+ ayt+ b, and
deduce that they are the parametric equations of a parabola.

9, Find the equation of the system of comnics which pass through the
points (0, 0), (0, 2), (1, 3), (3, 0}, and hence find the equation of the conic
which passes through these four points and the peint {~1, - 1).

10. Find the equation of the conic which passes through the five points
(-1,0) (0,1}, (2, 2), (2,0), (3, 3). What is the nature of the conic?

11. Show that the system of conics x¥a®+ y%/b® - 1+ Axy =0, pass through
the ends of the principal axes of the ellipse x¥/a®+ 36" =1.

12. Find the equation and nature of the conic which passes through the

four points of intersection of the circle x*+3?—4x-4p-2=0 and the
coordinate axes and also passes through the centre of the circle,
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13. Show that the equations of the two parabelas which pass through the
common peints of the circle xt + 3% =4 and the line pair (x - 1)y - 1)=0 are
P42y + P -2x—2y-2=0 and x2—2xy+y*+2x+2y-6=0.

14. Find the equation of the rectangular hyperbola which passes through
the commeoen points of the ellipse x¥+4y% =16 and the circle x¥+? =8,

15. Show that for all values of & except zero the equation
2ryi-at+Mx-aly-a)=0

represents a conic touching the circle 2% + p2 =4? at the points (e, 0), (0, a).
For what values of & is the conic a parabola?

16, Find the finite values of A for which the conic
16x®— 32 - 96x -+ 2dy + A2 — 16x) =0,
represenis: (i) a rectangular hyperbola; (ii) a parabola; (iii) a line pair.

17. Find the equation of the conic which touches the ellipse x%/a®+ y3/b% =1
at the ends of the chord x +y =& and also passes through the origin.

18. Identify the following systems of conics:
(i) (x+y—-W2-y+ 3+ Mx - 1Ny-2)=0;
(D) x?+ Y -4+ Mx—pHx+y+1)=0;
(i) xy - 1+Mx+y - DE=0;
{iv) (x-yHx+p)+nx-2)2=0.

19. Find the equation of the conic which has three-point contact with the
circle x2+ »* — 4x + 3y=0 at the point (2, 1) and which meets the circle again
at the origin and also passes through the point (1, —1).

20. Find the equation of the system of conics which touch the circle
x34+yt=2g® at the peint (a, ) and meet it again at the ends of the chord
x+y-e=10. Find also the equation of the rectangular hyperbola in the
system. '

21. Show that all conics passing through the vertices and orthocentre of
the triangle formed by the lines y+x-1=0, x+1=0, 2Zy-x=0 are
rectangular hyperbolae.

22. Prove that the equation 502 -4ax)+(x-2y-a)x+2y+3a)=0
represents a ciccle which meets the parabola y® =4ax at the cnds of a focal
chord and find where it meets the curve again,

23. Prove that the equation (1 + 22X -dax)+(x -ty +aBx+ v+ 30)=0
represents a circle which touches the parabola 3® =4ax at the point (ar%, 2at)
and passes through its focus.

24. Find the coordinates of the foci of the conic x¥/(a® - )+ p3/(F2—2) =1,
a>>b, and deduce that the systemn of conics represented by the equation have
common foci. Prove that in general two conics of the system pass through
4 given point.
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MISCELLANEOUS EXAMPLES

1. Find the equation of the chord of the ellipse 4x?+9y®=36 with
mid-point (- 1, 1).

2. Find the coordinates of the point of intersection of the tangents to the
parabola y* =8x at the ends of the chord y—2x+2=0.

3. Findthe locus of the mid-points of chords of the rectangular hyperbola
xy =& which pass through the point (2, 3).

4. Prove that the locus of the mid-points of chords of a parabola which
pass through a fixed point is a parabola.

5. A tangent to the conic x? - y2=9 cuts the circle x®+® =9 at L, M;
find the locus of the mid-point of LA.

6. The perpendicular bisector of a chord of the ellipse #x?+ a¥y® =g%b?
passes through the point (- 4, 8). Find the locus of the mid-point of the
chord.

7. If the normal at P meets the curve xy =c® again at O, prove that
2P =OP? where O is the centre.

8. P, Q are points on the parabola »® =4ax such that PQ subtends a
right angle at the vertex. Prove that PQ meets the axis of the parabola at
a fixed point.

9, Chords of an ellipse are drawn through a fixed point P; show that
their mid-points lie on an ellipse whose centre bisects the line joining P to the
centre of the given ellipse,

10. P is a point on a rectangular hyperbola and a chord FW subtends a
right angle at P. Prove that VW is paralle] to the normal at P.

11. Chord PQ is normal at P to the parabola y* =dax, If P is the point
{ar?, 2at), find the coordinates of the point of ntersection of the tangents at
P and @ and deduce the locus of this point as P varies.

12, Show that the equation xy+2x-y-6=0 represents a rectangular
hyperbola and find the equations of its axes.

13, Prove that the locus of the mid-points of focal chords of a parabola
having latus rectum of length 2{ is a parabola with latus rectum of length /.

14, The extremities of any diameter of an ellipse are L, L’ and M is any
other point on the curve, Prove that the product of the gradients of the
chords LM, L'M is constant.

15. A normal to the hyperbola x2/a® — y%/b* =1 meets the ax¢s in M and N.
Find the locus of the mid-point of M.

16. P, O, R are points on the parabola »® =4ax such that PR, QR are
normal to the curve at P, O respectively. Show that the centroid of the
triangle POR lies on the axis of the parabola.

17. Find the locus of the mid-points of chords of the hyperbola
x2/a? - y3/b® =1 which pass through the fixed point (#, &).
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18, Write down the equation of the chord of the parabola y® =4ax which
has mid-point (e, B). Hence deduce that the locus of the mid-points of
focal chords of the parabola is the parabola ¥ =2a(x - a).

19. The chords 4E, CD of an ellipse are equally inclined to the axes, prove
that the same is true of the chords AC, BD.

20, The normal to a hyperbola at a point P meets the transverse axis
produced at N. From N a perpendicular is drawn to an asymptote, meeting
it at £; show that LP is parallel to the conjugate axis.

21. Show that the feet of the three normals that can be drawn from any
point to a parabola lie on a circle which passes through the vertex of the
parabola.

22. Find the equation of the locus of the mid-peoints of chords of the
ellipse x3a®+ y2h® =1 which are drawn from the positive end of the minor
axis.

23, P, Q are variable points on the rectangular hyperbola xy =c? such that
the tangent at P passes through the foot of the ordinate at . Show that
the locus of the mid-point of the chord PQ is a rectangular hyperbola with
the same asymptotes as the given curve.

24, I two of the normals from the point P (x;, y,) to the parabola y* =4ax
are perpendicular to ecach other, prove thai: (i) P lies on the curve
¥ - ax+ 3a%=0; (ii) the foot of the third normal through P has coordinates
(xl - 3“9 - zyl)‘

25, Prove that the chords of contact of tangents drawn from a point to an
ellipse and its auxiliary circle meet on a fixed straight line.

26. Show that the chords joining the feet of the four perpendiculars from
a point to a rectangular hyperbola are perpendicular to each other,

27. Prove that a circle cuts the parabola »* =4ax in four points, the sum
of whose ordinates is zero.

28. The point P on a hyperbola, with focus S, is such that the tangent at P,
the latus rectum through S and one asymptote are concurrent, Prove that
SP is parallel to the other asymptote.

29. Prove that if the normals at the ends P, Q of a focal chord of an
ellipse meet at R, then the line through R parallel to the major axis bisects PQ,

30. If the points of contact of tangents from the point (2a, &) to the
parabola ® =4ax are P, {, prove that the perpendicular bisector of £ cuts
the axis of the parabola at the point (%24, 0).

31. The normals to a rectangular hyperbola at four points H, Py, P, P,
on it are concurrent; parallels through X to the normals at Py, P, P, cut
the curve again at 0. Q. O, Prove that H is the orthocentre of the
triangle 040.0,.

32. If two normals to a parabola intersect on a fixed line, prove that the
locus of the points of intersection of the corresponding tangents is a
- hyperbola.
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33. Find the equation of the conic which touches the ellipse x*/a® + y¥/6* =1
at the points (a, 0), (0, - b) and passes through the point (g, 5).

34. Find the equation of the conic through the points (2, 3), (3, 2), (3, 1),
{1, 3), (1, 2) and show that the conic is an ellipse.

38, Tangents are drawn from any point on the rectangular hyperbola
A2 =g - b to the ellipse 22 +a®? =a®b®. Prove that these tangents
are equally inclined to the asymptotes of the hyperbola.

36. Tf the normals at points A, B, D, E on an ellipse are concurrent, show
that DE and the diameter which bisects 4B are equally inclined to the major
axis of the ellipse.

37, Identify the system of comics (2x- y+1¥x+2py-1}+3x?=0 and
determine the values of » which correspond to: (i) a perpendicular line pair;
{ii) a parabola.

38, A4, B, C, D are the points {ar, 2ar), t=14, t;, 43, #,, on the parabola
¥y =4gx, Find the equation of the line pair AB, CD and hence write down
the equation of the system of conics passing through A, B, €, D. Show
that the conic of this system which passes through the point of intersection
of the tangents to the parabola at 4 and B also passes through the intersection
of the tangenis at C and D,

39, The line fx + my = | meets the line pair ax?+ 2hxy + by*=0at P and Q;
find the equation of the rectangular hyperbola which touches the line pair
at Pand Q.

40, A rectangular hyperbola passes through & fixed point # and has double
conlact with the conic ax® + 2 =1. Prove that the chord of contact touches
a fixed circle whose centre is P.



CHAPTER IX
DE MOIVRE'S THEOREM AND SIMPLE APPLICATIONS

De Moivre’s theorem. For all values of n, the value, or one of the
values in the case where n is fractional, of (cos 0 +i sin 9)n, is

cos nf--i sin nf.
(i) Let n be a positive integer, then using the result
(cos 8,4 sin §,)(cos 8, + £ sin 8,) =cos (§; +0,)+ £ 51 (0, +6,),
it follows that
{cos & +isin 6)*=cos 20+ sin 20;
(cos 8-+ sin 6)°={cos 6/ sint 6)(cos 20+ i sin 26),
=¢os 30-+ #sin 30,
Continuing this process, when n is a positive integer,
{cos 84 i sin 0)" =cos n8-+i sin 6.

(i1) Let n be a negative integer equal to —m; where m is a positive
integer.
Then
. . 1
) 0)" = 0+ ) R . SR
{cos 61 sin 8)* = (cos B-+isin B) (cos 6+ 7 sim 0"
_ ©c0s0+isinQ
€08 mB 1 sin mb’

=¢0s {—m0) +isin (—mB)=cos nb+ i sin nb.

from (1) above,

(iiiy Let n be @ fraction equal to p/q, where p, ¢ are integers and ¢ is
positive.
In this case, (cos 64 i sin 8)" has not a unique value; we prove that

ane of its values is cos 19 1 sin uf.
We have

(cos ‘%? +isin -’—;ﬁ)q =cos pb+isin pb, from (i),

={cos 0+isin 97, from (i}, (ii).

Ie. cos%ﬁ-i-z' sin‘!:]—6 is one of the gth roots of {cos 9+ sin 8)*,

0 .. p8 . ..
. COs “; - -l-:sm% is one value of (cos6-+/sin0)P? and the

theorem is proved.
181
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Ex. L. If z=cos 9+ isin B, find the values of 2%+ 270 gud 20— z77, where n
is a positive integer,

=cosrd+isinaf;, z7™=cos (- nd)+isin (- ab)
=cos #0 — § sin 10,
ozt z=2cosmd; -z " =2isinnd.
Ex. 2. [fz+1/z=1, find the value of 2%+ 125,
As 0 exists such that 2 cos 8 =1, in fact 6 =%~ is one value, we can take
z=co5 0+ isin8,
giving z+1/z=2cos 0 =1, when 8 =1m,

Hence 25+ 1/z5=2 cos =2 cos %—=l.

Ex. 3. Simplify (/3 +iV+{+/3-D)®, where n is an integer.

4/3+§=2(cos &+ isin 8), where tan 6= {,],5, 6=4ir
le. 4/3+i=2(cos L1 +1sin ).
Similarly, '3 - i=2fcos (- Ln)+isin (- }m)}.

Y (V3D (3 - Dt =2%c0s dnm+isin dam o+ cos (- Ju)
+isin (- Lnm)}
=2*. 2 ¢os $am =2 Loos Lam.

Values of {cos0 +isin®)1/4, where q is & positive integer. It has been
shown that one value of {cos ©-Fisin 8)Y¢ 15 cos é’ 6+ isin ;II 6, other
values are obtained by writing

cos 9+ sin B==cos(2rx- 0)+isin (2rn+0),
where r is integral.

Then as one value of {cos (2re+8)+isin (2rx+90)}114 is

cosé (2re+0)+i sin q (2re+0),

it follows by taking #=90,1,2, . . ., that each of the following is a
value of (cos 8+ { sin B)%/e:

cos! 9+7 sin 1 2. cos !(2n+ﬂ)+isin ] (2rn+0),
q q q q
cos 1 (4=+0)+isin ! dn+0), ...
q q
The values obtained are different when risequalt00, 1,2, . . . g—1;

but for higher values of r the previous values of (cos 8-+ sin 8)%% are
repeated.
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Hence the q different values of (cos 0+ isin 8)' are given by the
expression
cos ; Qrr+0)+i sin‘—; Qrr-t0),

wherer is takenas 0,1, 2, . . . g—1.

Ex. 4. Find the values of (1) {cos dn+isin oy () (1+ 078 (i) the
ciibe roots of —1i.
(i} (cos 4w+ isindx)
=08 H2rr+ Ind+ 7 sin 4(2rm + 7), with r=0, 1, 2,
=cos 4n+isin I, cos Jr+ i sin m, cos Idn +isin 2=,
=cos 1n+isin §r, cos mw+isin g, cos §n - isin §r.
@ et (ﬁﬁi
But 1+ i=+/2(cos Lx+isin 1n),
i+ N =2¥cos H2rr+ dn)+ #sin 3(2rm + In)}, withr=0,1, 2, 3.

Hence  (1+#)}=2"¥cos J(2rm+4n) - i sin 4Q2rm + §m)},
with r=0,1,2, 3.
(iii) - i=cos (—¥m)+isin (- 3m).
5 (= Dt =cos H2rm — §m) + i sin 3(2rm - 4n), with =0, 1, 2,
=cos (- ¥n)+ ésin (- 3n), cosdn +isin g,
cos Zm+ # sin £,

=H+/3-4), i, —-3(/3+i)

EXAMPLES %a

1. Simplify the following expressions:
(i) (cos0+isin B)% (i) (cos dr+igindm®; (iii) (cos 9+ isinB)~%;
(iv) (cos B —isin 8y %; (v} (sin B+ 7 cos B)%;
(vi) (cos 30 + i sin 39K cos 6 — #sin 8)%; {vii) (sin 20 - i cos 26Y°3,
2. Simplify:
@ (1+0% G (1-9)7 (i) (1-iv3)%  Gv) (V3+0)7%
) (WV3I+D0- (3 -1 i) (W3- (V3710

‘AY ]
3. Express (Z—H) in the {r, 9} form,

1-i
4. If z=cos0+7sin®, find the values of: (i) z7%; (i} z+2"1;
(iil) 22+ z7%; (iv) z2-z73%; v) 5+ 275 (vi) 2+ 22+ 1+ 273+ 274

(i} (2% - z7%f(z - z7).

5. Prove that (sin x +icos x)® =cos #(37 — X} + £ sin m(dm - x) when = is
an integer.

6. Simplify (1 + /3% + (1 - i/ 3", where # is integral.

7. Express (1 +3)™1 + )", where n is integral, in the (r, 9) form.
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8. Find the square roots of: (1) cos 28+isin 28; (i) 4(cos 0+ isin 9);
Git) cos40-isin40; (iv) sinf+ icos0; (V) cosdm+isinim; (v 44
il) 144 (vili) 20044v/3);  (x) -7

9, Find the cube roots of: (i) cos 38+isin 38; (i) cos 60+ isin 60,
(itt) B(cos 61 sin 0); (iv) sinf-fcos6; (v) cos 3w +7sin i,
i) —-1; (vii) 8i; (vii) 1 -1,

10. Obtain all the values of: () 1}, @) i Gi) (- Y (v (- DY;
V)32 i (- DY (i) A+Hh (i) (V3405

11, Represent on the Arpand diagram: (i) the cube reots of 1; (i) the
fourth roots of 81; (iii) the square roots of 7.

12. Obtain the values of: () ,\/ Loan :/-!-i"-

alues of: o {74
13. Find the product of the four values of (cos ir =/ sin 4m)l,
14. Find the values of: () (- )% (i) (1 -7,

1 NP .
15. Ifz+;-=1, find the valugs of: (i) 23*;:'1; Gi) z‘+;, (i) z’—rz7-
16. If z—-! z= — 3, find the values of: (i} 2% - 1 (i) 25+ - L, (iii) 28+ L
Z ] . zz’ 23$ zs
17, Solve the equations: (1) x¥+1=0; (i) x*+ 16i=0.
Binomial equations

Type (). x"—a*=0, where n is a positive integer and a is real.
We have x*=gq"=ag"(cos 2rr+1isin 2rm)

" x=a(cos-2:;ﬂ+isin 2;3), with r=0,1,2, ... n—1.

Geometrical representation of the roots.
The numbers

( e, ert)
@l cos —-—+isn---
n "

with r=0,1,2,...n—1, are represented
by the vertices A, 4,, ... Ay of a regular
n-sided polygon inscribed in a circle,
centre ¢, radius g, with the vertex 4, on
the x-axis (Fig. 76).

Special case a=1.

xt—1=0, Fia. 76.
, . 2 .
x=ms&+:sm 7, with r=0,1,2,...n-1,
n "
=1 osgw+isingnc f'r:'fsin—r:
-—,Cn n,osn-r PRUETENEEE

cOs %(n— 1)c+isin i(n— .
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Writing  2=cos 2 n+isin 2,
n n
. 3 .. 4
then a’=(cosgn+ism2'n) =cosﬂu+:sm—n,
" n n #

2 .., 2\ 6 . 6
a’—_-(cos—r:+151n—r:) =cos- nt+fsin- m,
" n n n

n-1
al= (oos ?rr—l— isin2 1':) =c:osg(n— 1=t isin-z- (n— 1=,
n n n n

.. The roots of the equation x*—1=0, are

lr x, az, a'as LI x”—ls
2 ... 2
where «=cos;l=c+;sm PR

More generally, it can be verified that the roots are

I n-1
l,m!(l)?m""m ]

2re L 2w
where w=cos ~ Hisin == for any one of the values

r=1,2,...n—1.

Type (i1). x*+a*={, where n is a positive integer and a is real.
Following the method used in type (i),

x=a{cos£(2r+!)+fsinE(2r+l)}, with r=0,1,2, . . . (n—1).

Geometrically the roots are represented by the vertices of a regular
n-sided polygen A4,, A, ... A, inscribed in a circle, centre O,
radius g, with the vertex 4, such that angle XOA,=r/n.

Type (if). (x—-py*=a*{x—q), where n is a positive inreger and
p, q are real.
As x#g, by writing (x—p){(x—g) as X, this equation reduces to
type (i),
x—p

2, .. 2rx ie
SO x—_-a—a(cos—n— +i sin 7), withn=0,1,2,...n-1.

Hence values of x can be determined,
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Type (iv). The general complex binomial eguation, (z—z)*=2z,",
where n is a positive integer and z,, z, are given complex numbers.

Suppose zy=alcos «+isina) and z;=x,+iy.
Then

(z—z,*=a"(cos ra+ i sin ne)=a™cos (2rr+ae) +i sin (2rx+ e}
z-z,=a {cos ! @t ny+isin L rnt m)},
with r=0,1,2,. . n— L

ILe. z=2+a {cos(u—l-&r)—%isin(ac-i-gf"-c)}-
n n

Geometrically these values of z will be represented by the vertices
of a n-sided polygon inscribed in a circle, centre C(x,, y,), radius a.

Fic. 77.

with the vertex 4, displaced an angle « from the line through the centre
parallel to the x-axis.
Ex. 5, Solve () x5+1=0; () (x-1¥=16x; (i) x*+x*-x2-1=0.
(i) x5 =~ 1 =cos (2re+ 7w+ i sin 2re+m).
x —cos 32r+ 1)+ isin L2r + Dm, with r=0,1,2, 3,4,
=cos 37+ i sin 4w, cos 3+ 7sin 3, cos m+isin x,
cos 4m +isin Zr, cos $r+7sin Ix.

But cos Ix+ i sin 2r —cos $r— i sin 3n; cos 3w+ i sin3m —cos tr—isin i

. x= —1, cos dm-kisin im, cos dnisin 3
(i) O — 1)t = 16x%=2%"(cos 2rn + i sin 2rm).
x-1 = 2x(cos 2rmjd + f sin 2rnfd), with r=0, 1, 2, 3.
Lx-1 = 2x; x=-L
x-1 = Zixs  x=1(1-20=1(1+2d.
¥x-1 = -2x, x=%
x-1 —2ix;  x=1j(1+20)=H1-20).

Le. x =-1, 5 @12
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(iii) - xf e 1= (- D+ 1)
So the given equation is equivalent to the equations
Bo1=0; a+1=0,
which give the solutions
x=1, ¥ - 1Liv3), L&

Factors. Functions of the forms x"+1, x"+a®, x*—2x"cosn0+1,
where # is a positive integer, can be expressed as products of real factors
by first solving the corresponding equations and then combining pairs
of linear complex factors.

(i) x"—1, where n is a positive integer
When x*=1=cos 2rr+isin 2rr,
x=1, cos 2n{n+isin 2x/n, cos 4n/ntisindnfn, . . .
cos 2(n— Dxfn+isin 2(n— Din/n.
The last root, cos 2(n— Dxfn-+i sin 2(n— 1)xfn=cos 2x/n—isin Zx/n,
and is closely refated to the first complex root.

Similarly, the second from the last root is equal to cos 4xfn—isin 4nfn
and so on.

;. When n is even, there will be 1(n—2) pairs of complex roots
together with the root 1 and the 100t cos nrfr+i sin n={n, that
is, — 1.

Wkhen n is odd, there will be 3{n— 1) pairs of complex roots together
with the root 1.

Now a pair of corresponding complex roots such as

cos 2xfn+isin 2=/n,
Tead to factors

{x—(cos 2n/n+1 sin 2n/m)}{x —(cos 2n{n— i sin 2n/n)};
i.e. to the quadratic factor x*—2x cos 2xfn-- 1.
Hence, when n is even and >12,

xt-f={x—=D{x+1¥x*—2x cos 2njn+ 1)(x2—2x cos dnfn+1} . , .
(x¥—-2x cos (n—2wfn+ 1),
and, whken n is odd and =1,

=1 ={x—1)(x2—2x cos 2nfn+ 1}x®~2x cos dnfn+1) . . .
(x®—2x cos (n— D=/nt1).
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{ii) x"=-1, where n is a positive iuteger
In this case, the factors are obtained by solving the equation
xt= —1=cos (2r+ Dx+isin (2r+ D,
and proceeding as in (i) above with the following results:
When n is even and =2,

X"+ 1= (x%—2x cos nfn+ 1}(x*—2x cos 3n/n+1) . . .
(x®=2x cos (n— L)/ +1);

Wken n is odd and >1,
x4+ 1=(x+ 1}x*—2x cos nfn+ D){x%—-2x cos 3njn+1) . . .
(x*—2x cos (n—xfn+1).
(iii) x3—2x" cos n@ 1, where n is a positive integer
If x—-2xtcos n6+1=0,

_2c08 nt /(4 cos? ni—4)

xt 5 ~=g0s 0 £+ i sin 0o,
ILe. x"=cos {2rr+nb)+isin (2rr+ #6),
x=cos (0+2rnfm)tisin (0 +2rnfn),r=0,1,2, ... (n—1).

So x=cosbiisiné, cos (84 2n/m) Lisin(04-2x/m), . . .
The pair of roots cos 63:-7sin ¢ gives rise to the quadratic factor
x?—2xcos0+1,

and similarly for the other pairs.
Hence
x¥—2x" cos nb |- 1 ={x*— 2x cos 8+ 1){x®~2x cos (0-+ 2n/m)+ 1}
{2 —2xcos (0 (2n—-Dmfm)+ 1.

Ex. 6, Express in real factors () X - 1; (i) 25-x%4 1.
0 1 X1=1,
x=¢0s rm+isin &rm, withr=0,1,2, ... 6.
=1, cos dx L {5in &, cos #n & i sin #n, cos § 4 fsin Sr,
But  {x - (cos 4= + i sin #x)}{x ~ (cos £x - i sin Im)}
=x%-2x cos #r 4 1, etc.

S xT-1=(x - 1Xa% - 2x cos &n+ 1)(x? - Zx cos 4+ 1)
(xE-2x cos §m+ 1),

(i} If »*-x*+1=0,
22 =31+ iv/3) =cos }r L i sin §=,
Lox=cos H2rm+dm) £ isin H2rm + 4w, r=0, 1, 2,
~¢0s §m £ 7 sin §n, cos I + 4 sin 3w, cos 43w + i sin A3,
Hence x%-x3+1=0-2xcos {n+1)¥x*-2xcos Zm+ 1)
(x? - 2x cos Mdn + 1),
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EXAMPLES 9b
L Solve the following equations: @) xt-1=0; (i) x7+1=0;
Gii) &3 +27=0; (¥) (x-1P=8; (V) x"+x*+2x*+1=0.

2. Expressinreal factors: (i) ¥+ 1; (i) x*+1; (i) x%-1; (iv) x®+1;
W) 32+ (i) Bext+ 3+ a2+ x4+ 1L

3. Solve the equation (z—-1)—64 and show that the roots can be
represented by the vertices of a regular hexagon in the Argand diagram.

4. Find the common roots of the equations x!*-1=0, x* +x¥+ =0,
%, Solve the equations: (i) (x+1¥ =8(x~ 1y (i) (x+ D ={x~ D%
6. Factorise: () x*+x5+1; (i) a%~2x3cos 30 +1.

7. Solve the equation x® =1 and show that one root is m =cos = + i sin §m.
Prove that the roots can be expressed as 1, &, o, . . . «7 and represent them
on the Argand diagram. Prove also that 1+ e+ea®+ ., . +27=0.

8. Show that the cube roots of unity can be written 1, w, «® and prove
that: (i) 1+e+ei=0; @i} @®=1; Qi) of=w; (V) ¥ =l

9, Express each of the following fractions as the sum of two partial
1

; - 1

@ avemerr @ AT
10. Find the soluticns of the equation (x < 1}* =x%.
11. Express in real factors: () x®+x5+1; () x®+x8+1.

12. Show that the roots of the equation (z - {)* =§® can be represented by
the vertices of an equilateral triangle.

13. Solve the equations: (i) X +(x—8=0; (i) (z- 1+ =(1 ~ i),
1

fractions: (i} 9-14_---1;

14. Prove that the n values of 1% form a G.P.

15, Show that
4+x*-2cosmd={x+x1-2cosB}{x+xt-2cos{0+2n/m)} . . .
{x+xt-2cos (0+2n-2n/m}.
16. P,P, . . . P, is a regular polygon of n sides inscribed in a circle,
centre @, radius r; P is a point on OF,, such that OP=x. Write down

expressions for PP2, PP}, . . . PP.® by using the cosine rule and deduce
that

PP3 PP2 ... PP2=(x"-r"p

17. Write down the factors of #%* - 2x* cos #6+ 1 and by the substitutions
x=1, B=2¢, prove the result,

sin n =271 sin & sin ($+ r/n) sin (¢ + 2mfn) . . . sin(@+a- 1 w/m),

18. Use the result of the previous question to express the quotient
sin ndfsin ¢ in a factorised form and by letting ¢ —» 0 deduce the result

2= lgin nfpsin 2n/nsinInin . . . sinn-1n/n=n.
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Expressions for cos, sin"0 in terms of multiple angles
Let z=cosf+isinl, then zl=cos 60— #sin 6.
So2co8 9=z+z1 2isinb=z—271, | . . (i)
Also z'=cosnd +isinn® and =z "-cosn9—isin no,
S 2cos =zt vy Xiginml=ze—2z™8, | (i)

‘The results (i) and (ii) enable the expression of functions of the forms
cos" 6, sin™8, cosPe, sin?d, where #, p, ¢ are positive integers, in terms
of the cosines and sines of multiple angles as illustrated in the following
worked exampiles.

Ex. 7. Express cos® 0 in terms of multiple angles.
Writing z=cos9+7sin b,

then 2cosB==z+§-
1 L]
2‘oos‘ﬂ=(z+z)

=28+ 624+ 1528+ 20 + lg+—§;+ le'
22Ty

=(z"+-]n—)+6(z‘+ ld) + 15(:2+ L2)+20
F4 4 Z

=2 ¢cos 68+ 12 cos 49+ 30 cos 26 + 20.
Ie. c0s® 6 ={(cos 60+ 6 cos 40+ 15 cos 26 + 10),

Ex. 8. Express sin® 0 cos® 0 in terms of multiple angles and hence evaluate
o
f sin® 8 cos? 6 49.

i
As before,

Qi sin %2 cos a),=(z_;)ﬂ(z+§)== (zz_ ;@)2(2_})4
(z‘—2+zl4)(z‘—422+6—;; +z—14)

1 1 1 1
=(z"+;§) —4(z“+z—e) +4(z"+;) +4(z’+;) - 10

=2 cos 86 - B cos 60+ & cos 40+ B cos 20— 10.
Ie. sin® 8 cos® & =y3g( — cos 80 +4 cos 66~ 4 cos 40 - 4 cos 20 + 5).

i
fhsin“ 0 cos® 8 49 =T‘%?[— 4 5in 80 + &sin 66 - sin 40 - 2 sin 2B+SB]
0 o
—rism.

Ex. 9. If z=cos9 +7sin 8, express (i) j

T

' ) ; — in the form

- zcos B’

a+ ib.



MULTIPLE ANGLES bl

In dealing with fractional functions of z where z=cos0+{siné, the
denominator f(z) should be expressed as a real function by meltiplying by

f(z;) and using the results z+z71=2cos 9, z*+z 2 =2 cos 28, etc.
cos 6
1 _ 1- z
1-zcos®

@ (l—zcosﬂ)(l—c%e)

1 - cos B(cos 0 — i sin )

i .
; sas - =cos 8- {sinb,
1-cos ﬂ(z+;_) 1 cost 8

1—cos?0+isindcosl
= T 1-2cost0+cos?h
sin? B+ fsinf cos
T Tsin?6
=1+icotd,

~N=

(i) ~——1_z"=——-——(1_2)(1 z)
1-z (1-z)(1~'-)

Z

1
I--+z%"l_zn
z

1- (z+!)+l
Z
_1-{cos8—isinG)+cosn—1 64-isinn - 10— {cos nl + i sin b}
B 2" Zcos

=l—cosﬁ+cos n-16-cos nd+i(sinB+sinn-19-~ sinnﬁ)_
2-2¢os0

Expansions of cos nf, sinn0, tan n®, where n is a positive integer.
Expansions of cos #9, sin 6 and hence also of tan n8 in terms of powers
of the corresponding ratios are obtained by direct application of
De Moivre’s theorem,

For cos ni+isin no=(c+is)?,
where e=cos 0, s=sin 0,
=+ 4 Coe™ Wis) + nCoc® 2isPE+ . . .+ aCre® T(is)

+o.o.. +(£S)ﬂ’
=P Coe? 252y Cpen 45t — |
+J‘S(nclcn_1_ﬂC3cn_3sz+nCﬁcﬂ_SS"‘ o .).
Cocospf = — Cuc it Cuem 50— L L,
sin 08 = $(,C,e" 1 — yCat™ %82+ ,Cee 31— . . ).
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sin nb
9=
tan cos nb

S(nclc" 1_;;qu'.','"' 352+1IC et SS‘._ - .)
e — pCoc® 28+ ,Cpem 45t —

*

Dividing numerator and denominator by c* and writing tan 8 =s/e=71,

we have
Cit— G+, Ctf— . . .
1-, Gt Cee=" ..
Ex. 10. Express: (i) cos 50 in rerms of cos 8, (&) tan 60 /1 terms of tan 0,
(i) Substituting » =75 in the expression for cos m9,
€05 58 =5 — (Cocds® + ,Cyost
=¢b - 10c3(1 — ¢®) + 5e(1 - 299

tannf="

=16¢° - 203 + Se.
Le. cos 50 =16 cos®? 0~ 20 cos? AL 5 cos O,
(i) Substituting n 6 in the expression for tan »8,
6r - 207+ 648
tanff = —— o

S153 158
where ¢ =tan 0.

EX, 11, Obrain the equation in tan 8 whose roots are tan }x, tan r, tan 3,
tan 3 and hence obtain the equation with roots tan® 4r, tan® 4, Deduce that:
() tan“ ix+tan® n=10; (i) tan dr tan &r =\/5.

If & denotes one of the angles 1, Zx, 2, 4,

tan 56 0,

~ W24 8
But n 36 =3 g5

S5 102+ =0
#5105+ 1) =0.
The root ¢ =0, corresponds to 6=0or =,
.. The roots of the equation
#-1084+5=0 B (1]
are tan 4n, tan %=, tan 3r, tan #r.
As tan $r=—tan = and tan 3w = — tan =, the roots of (i) are
+tan 1w, +tan fm.
Hence, writing 2=T, the equation
T2-10T+5~-0,

-—+ where f=tan®.

has roots tan® i, tan? £r.
", tan? 4w + tan® #r =10,
tan? 1= tan® #r =35,
and as tan ir, tan 2w are both positive,
tan L = tan &t =+/5,
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EXAMPLES %

1. M z=cos 9+ isin 0, find the values of the following expressions:
i i 1 1 1
Ry T f _ ey L8 L. - id_ "
() z +z, (i) z po (i) 2%+ # (iv) z e
1 2 . 2 i
3 — . a_~T = -
¥z +2z+z‘+z’ (vi) 2 z+1+2z+zs.
. in B
iy {1 +2z)(1 + 3) (viii) (1 + 2 sin e)(1 +%—)
2 If z=cos 0+ i sin 6, express the following in terms of z:
(i) 2cos49; {ii) 2isin 50; (i) cos 70;
{iv) cos®9; {(v) sint 0; {vi) sin? 0 cos @,
3. Express in terms of cosines or sines of multiple angles: (i) cos®8;
(i) sin*8; (i) sin®0; (iv) cos’0; (v) sin®Bcos®;  (vi) cos'Osin® 0,
4. Prove that 2% sin® 0 cos?¥ 0 =sin 70— 3 sin 59 +sin 30+ 5sin 6,
§, Express the following in terms of cos 8: (i} cos 49; (ii) sin 46/sin 6;
{jii) cos 60; (iv} sin 68/sin €.
6. Express the following in terms of sin®: (i) sin 30; (i) cos 48;
(iii) sin 50; (iv) cos 50/cos B,
7. Express in terms of tan 6; (i) tan 30; (i) tan 49; (iii) tan 70.
8. When 0=0, 1w, #n, verify that tan 36 = 0. By expressing tan 3% in
terms of tan 8, show that the equation - 3 = { has roots tan 4r, tan Zx and
deduce the values of these ratios.

9. Prove that cos 50+ 5 cos & =2 cos &8 cos* 6 — 5 cos 26).
10. If z=e~", show that (I + 2)/{1 - z) =i cot 49.

11. Evaluate: {) f o8040, (i) f” 04 6 sin® 8 46,
(1] 3]

12, Verify that cos 46 = — cos 38 when 6 =4n, #x, ¥x, = If c=cos¥,
prove that the roots of the equation 8c*+4c®-8c2-3c+1=0 are
c0s 4=, cos #w, cos &, -1 and deduce that cos 4 +cos x+cos §n =3

13. When 6=0, 3x, %r, $r verify that cos49—cos 36 and prove that
cos &, cos ¥, cos $n are the roots of the equation 8x®+4x% - 4x -1 =0.

14. Express sin 30 in terms of sin 8, and hence prove that sin +rw, sin 4=,
sin §n, sin ¥~ are the roots of the equation 16s*- 2057+ 5 = 0. Deduce that
sin® 1, sin® 4 are the roots of the equation 16x*-20x+ 5= 0.

15, Express the following functions in the form a+ i, z being written for
cos0+isinb:

T 1, (L+zXt+2Y),
iTzeoser D (“E) 2 P PR
— " cosn 3] 1 -x"z5

W o e e @i RS iy 2

. 1 .
@ i (i)
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16. By expressing cos 50 in terms of cos 8, prove that
16(x — cos m)(x — cos $m)(x - cos Em)(x - cos &n)
=162+ 162 - 422 - 4x+ 1.
17. By expressing the equation ¢os 69 = - cos 58 in terms of cos 8, prove
that €0s {7 + cos #pw + cos i+ 008 {ym + cos & =4-
18. Show that the equation with roots tan®4m, tan?dnm, tan?in is
x*=21x%+35x - 7=0 and deduce the values of:
@ tan® §r+tan® $m 4 tan® $m; (i) sec? dw+sec? 3+ sect Sx,

MISCELLANEOUS EXAMPLES

1, Evaluate {(+/3+ P+ (+/3-NE
2. Find the values of (- )L

i . .
3. Express m in the form a+ib.

4. Express in real factors: (i) x7+1; (i) 2%~ /383 + 1.

5. Find the principal values of am (4 + 301,

6. Represent on the Argand diagram the roots of the equation z%+ 1 =0.

7. Use De Moivre’s theorem to obtain the expansions of cos 8¢ and sin 86
in terms of cos 6 and sin 6.

8. Find the three cube roots of 1+i+/3, each correct to two decimal
places.

9. Express 1/{1+x%) as a sum of two partial fractions, and hence find the

fourth derivative of the function.
e 1-1/2% |
10. If z=cos5 0+ i5in 6, prove that T/ ={tan 6.
11. Find the roots of the equation x® - 4x*+ 16 — 0 and represent them on
the Argand diagram.

12. Prove that sin 70/sin 0 =8 cos®* 20 + 4 cos® 260 =4 cos 20 — 1.

ih5
13. Find the principal values of am (:—i’) .

14, If « =cos %n+isin %x, represent the points «, o2, o3, of, a® of, 7 on
the Argand diagram and show that they are the vertices of a regular poiygon.

15. Find the square roots of (I+z)/{1 - z), where z=¢", and show that
the principal values of their amplitudes differ numerically by 1=,

16, Find the four fourth roots of 4 - 2/ in the form a+ ib, where @, b are
cach correct to two decimal places. _

17. Solve the equation x™ - x%+ 1=0 by treating it as a quadratic in x8,

18. Prove that sin 70 =7 sin 0 - 56 5in30 4 112 5in% 0 - 64 sin” # and deduce
that gin® 4=+ sin® &n + sin? 3w =1

19. Express |/(x® - 2axcos 8 + a¥) in partial fractions and find the coefficient
of x* in the expansion of the function in ascending powers of x,

20. Solve the equation 2t =+/3 - /.
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21 If x -i-}: =2 cos 8, prove that x™+ xl—n =2 cos n9, when »n is itltegral;

22, Find the modulus of z(z - §/(1 + iz) when |z] =1.
23. Show that cos® 6 5in* 8 can be expressed in the form
gy cos 8+ g, cos 30+ ag cos 56+ a, cos 70+ ay cos 90,
and show by integration or otherwise, that a, - o4+ 4a, - 32, + 3a, =335

24. Prove that all the roots of the equation (z + 2)* =z" have their real parts
equal to -1,

25, Find the values of © which satisfy the equation tan 40=1. Hence
show that the roots of the equation #*+4¢%- 6 - 4r+1=0 are tan frr,
where r=1, 5,9, 13.

26. Factorise x¥+x"+1.

27. Find the seven 7th roots of wnity and prove that the sum of their sth
powers always vanishes unless n is a multiple of 7.

28, Show that the equation 32z5=(z+ 1)® has four complex roots, two in
each of the second and third quadrants. Show that all the roots lie on a
circle.

29, If # is a positive integer, prove that (1 + %+ (1 -H= =n+lcng Lan,

30. Expand cot 70 in terms of cot 0 and by means of the equation cot 78 = 0,
prove that the roots of the equation x3-21x%+35x% -7 ~0 are cot {5rm,
r=1,3,5,9, 11, 13. Deduce that cot® & cot? {m cot® Fr =7,

31, Solve the equation z% =(z+ )* and represent the roots geometrically.

32. I the point z moves on the circle [z] =1, find the lecus of the point
(2z - 1) and sketch the locus of the point + +/(2z-1).

33. A regular polygon of n sides is inscribed in a circle of radius x and
centre . P is a point within the circle on the radius to one of the vertices
of the polygon and such that OP =a. Prove that the product of the squares
of the distances of P from the vertices of the polygon is (x* - a")%.

34. Prove that cos #x, cosn, cos §r are the roots of the egquation
8x®+4x3-4x -1 =0 and show that sin 4 sin Znwsin §w=}/7.

35 If ZcosB=x+}‘ancl 2cos¢=y+},x prove that one of the values of
1 .
xﬂ'y"+W‘152ws(mﬂ+nqS).

6. A regular polygon of »n sides is inscribed in a circle centre O, radius r;
P is any point within the circle with OP=a. Prove that the sum of the
squares of the distances of P from the vertices of the polygon iz nia® + r%).

37. If a+ b+c =0, prove that a®+ b*+ &3 =3abe.
By writing a=cos «+isin ¢, b=cos £+ {sin B, ¢=cosy +isiny, prove
that, if sin o +sin B+siny =c¢os a+¢0s B+cosy =0, then
€08 e+ cos 3p+00s Iy =3 cos(a+B+vh
sin 3a 4 5in 3P +5in Iy =3 sin(a+ B+y).



CHAPTER X

FINITE SERIES, MATHEMATICAL INDUCTION

Finite series. Let s, be the sum to n terms of the series whose rth
term is .

n
Th.en En= 2u;3ﬂ1+u,+ PRI +ur+ PRI +uﬂ.
1

Now suppose that u, can be expressed in the form f{r)—f{r~1),
where f(r} is some function of r.

So un=fln)—fln—1)
tin—y =fn—1)—f(n—2)
tp-s=fn—2D—fln—3)

= f(2)— /(1)

Hy =f(1 } _f(o)-

Adding, sn=flm—f(0).
Hence s, can be determined if it is possible to express the general
term ty as a difference of a function of r and the same function of r— 1.

This difference method is the basis of the methods of summation of
many types of finite series.

Series related to the arithmetic series
{1) we=r{r+1K¥r+2) . . . {r+p).

E.g. u,-=r(r + Dfr--2),
ie. theseries 1.2.3+2.3.44 ... +n{n+1)n+2),
Take JOy=elr+1)(r +2)(r+3), adding the next term to uy,

then  f0)=fr=1)= Kr+ D)+ F3-7—1] =4y,
ur=4{fr)—fr—1)},

and  sn=3fi)—fO)
=n{n+ n+2)(n+3).

Generally, if  w=r(r+1(r+2) ... (r+p),
1
S"’ﬂ"i n(n+1¥n+2) . .. (a+p+1).
196
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(i) w=(a+x—1d)a+rd) . .. (atr+pd)

Eg. ue=(2r - 1)2r +3)(2r - 5),
ie. the series 3.5.7+5.7.9+ . .. +(@n+1)2n+3)(2n+5).
Take F(9=Cr+ DEr+3)Q2r+ 52 +7),

adding the next term 10 Uy,
then Ar)—flr—1)=(2r+ 1)(2r+3)2r+ S)[2r +7-2r—1)=8u,.
Le. u=4{f)—fir—1)},
and 5= 5{flm) - f(0)}
=Hn+D2n+ 2 +5)(2n+T)—-1.3.5. T}
=1{(2Zn+ 1)(2n +3)2n+ 5 2n +7) — 105},

N.B. The first factors in successive terms must be part of the same
A.P. as must be the separate factors in each term.

If this is not 50, the procedure is as illustrated in the following worked
examples.

Ex. 1. Find the sum to n terms of the series
1.2.44+2.3.5+ ... n(n+Dn+3).

Here wp=r(r+ 1L0Nr+ 3)
=rr+ 1Xr+ 2} + rr+ 1) =vp+ wy.

c. i”” = iv,- + iw,,
1 1 1
=4n(n+ Dn+ 20n + 3+ dn(n + 1 (n + 2)
sden(n + 10+ 2X3n + 13).

Ex. 2. Evaluale il(r+ 1Xr+ 3¥r+ 5).

Here the first factors of each term are in A.P. with common difference 1
and the separate factors in each term are in AP, with common difference 2.

Write =+ D+ 2D+ 3+ Alr+ 1)Mr+ )+ B(r+ 1N+ C.

By equating coefficients we have,

A=3 B=}, C=0
Le.  wp=(r+1Hr+2Xr+ 3+ 3r+ 1Hr+2)+3(r+1),
=vp+ Iwe + Iy,
Sa= Zv,- + 32wlr + 3Exf,

“‘H(" + D+ 26m+ 3)(n +4)— 24} + Hn+ IXn+ 2Hn+3) -6}
+H@m+ 1¥n+2)-2}
md{n+ 1){n+2)n+ 5)n+6)- 15,
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(iii) ur= DU
(a+r ld)(a-i-rd) . {a+r+pd)
The terms of this series are the reciprocals of those in case (ii).
Eg DU S
M= r T D2+ 3)2r 5 5)
In this case, take
s removing the first factor,
| 1
then  AN-fr- =G mmTs @D+ 3)
-4
TEIDE TS
Soup=—HAN-fr— 1)},
and s»= = 4{fim - A0)}

1
= mrm@ )

—4u,.

11 1
"&{1‘5'(2::3#3)(2%5)}'
As in the previous case, the method used here can be extended

to apply in examples where u, is not exactly of the standard form
above,

Ex. 3. Sum to n terms each of the fa!!owing series:

11 1 2 3
@y gtsaty et Wigg 3 atiasta s 67
i 1
® b =(2r+ D2+ 3)
Take Jin= 2,-_+3
1 1

then FO-fe-D =535~ 2
ur = - Hf(H~fr- 1)},

and 5= - 3{f() - O} - ;1,{;— 2—”%}
i _ r D)1
b T D+ 2r+3) 1)+ D0+3

1 1
T+ e+ +3)

=¥y - Wr.
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Following the standard method,

21 1 1
?"'=3“a+3’ E“" 2{6 (n+2){n+3)}
$n=zvf+zw’-
i ]
Lo 23
T4 2An+2n+ )

EXAMPLES 10a

In each of the questions 1-12, write down the rth term of the given series
and deduce its sum to # terms.

1.2+2.3+3.4+ , .. 2.3.4+4.5+5 .6+ ...
3.2.5+5.8+8.11+ . .. 4, 1.6+6.11+11.16+ . ..
5.1—+L+—1—+.. ! 1 1+..

1.2 2.3 3.4 ) 355?79 .
7.1.2.33+2.3.4+3.4.5+ ...
§.1.4.7+4.7.10+7.10.13+ .
9. 1 + L + 1 +

1.2.3 2.3.4 31.4.5

1 1 1

W53t s 79779 01"
1, 2.3.4.5+3.4.5.6+4.5.6.7+ . ..
12 I + 1 1

1.3.5.77375.7.975.7.9. it

13. Use known results for Zr, Zﬂ, zrs to sum each of the foilowing
T 9 1
series to n terms:
W) uy=28—r+1; (D) v, =r3r+2); (i) wur=(r+ 24+ 3N2r-1).
14. Sum to r terms the series:
D1.4+2.7+3.10+ ... (iD) 12,5422 . 6+3% 74 ..

15. Use the identity n‘ i -:l)’_ n3(2:+ s to sum to » terms the series

3 5 7
patE ata at
186, Find the following sums:

T n n
@) ;(Zr -8 G) gr(m 2r+5); (i) A2+ 1)
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17. Express each of the following functions in the form
A . B
FEIXr+2Xr+ 3 (P -24r+3)

and hence obtain iur in each case:
1
(i] R r P {ll} - ._..._l___.u..
RGN ) PR e L Rl e T
18. Find the sum Sr(r+ IXr +2)2r + 1),
1

19. If «, is the rth term of a series, find the sum of x terms of the series in
each of the folIowing cases:
. r+1 1
@ « 2r( Ty W ey ) ey

H
0. If Zh',- =3n*+2n, find ¥, and Zu,-.
1 LRS!

L
21, Prove that D r(r+ 2)0r+4) =3n(sn+ 1)(n + 4} + 5).
T

22, Sum to # terms each of the series:
)y 1. 5*+5 ¥19,132413 . 1784

@ Lo t 1
'134245356467

2r—1 r+ 1
23, Find (i) z r(r+2) {ii} Er(r+])(f+2) (iiD) ; r+2Xr+3)

T

Trigonometrical series. Certain trigonometrical series can be
summed by the difference method.

(1) sin a+sin (a+ B)+sin (a+28)+ . . . +sin(«+n—1p).
Multiply throughout by sin 48; then
tr $in 48 =sin («+r— 1 p) sin 48
= —3{cos (2 +32r—1B)— cos (« +42r—3 3p)}
= —Xflr)—fir—1)}, where f{r)=cos («+32r—1p).
S 5n sin 4B= —{f(m) - f(0)}

= —Hcos («+ 421 18) —cos (2~ 18)}
=gin 4np sin (a+4n— 1).

__sin 3np sin (x+3n—18)
Le. ST ip




APPLICATION OF DE MOIVRE'S THEOREM m

(i) cos «+cos (¢ + B)+cos (x+28)+ . . . cos (a+n—1E).
Using the method applied in (i} above,
s _sindnpcos (x+in—1 B,
" sin 18
Tt is interesting to note that the same result is obtained by treating
« as variable and B as constant in (i} and then differentiating with
respect to e«

Similarly, treating B as variable and « as constant and differentiating
with respect to p will give the sums of the series

cosatlcos (a+B)+2cos{a+20)+ . .. +(n—1)cos(a+n;lﬁ),
sin ¢+ 1sin (a+ B)+2 sin {«+2p)+ .. . +(@m—1) sin (x+r—1p).
F=3 Tt
(iiiy Y sin?(e+7—18), 3 cos?(x+r—18).
r=1 re=1

These series can be summed by first converting the powers into
mltiple angles.

Ex. 4, Sum the series sin®0+sin? 20+ . . . +sin® nb.
u, =5in? A9 =31 —cos 2r8).

Cosp=in-3 znv,, where v, =cos 2r0,
1
But sin 3(26)v, =}{sin (2r + 1)0 - sin (2r - )0}
—3{f(r) - fir— 1)}, where £(r) =sin (2r+ 1)f.
', sind iv, =4{sin (2n- 18 — sin 6} =cos (n + 10 sin .
1
B cos {n+1)0 sia By
Le. Sn -—‘5‘ {!’l ——— *’m—- }
Application of De Moivre’s theorem. Series of the forms
C=cos a+¢cos (zt By +ccos (x+2B)+ . .. +cPcos(x+n—1p),
S=sin a+c sin (a+B)+ ¢! sin (x+28)+ ... +¢nsin (a+n—18),
can be summed by obtaining the value of C+i5.

Ex. 5. Sum to n terms:

) 1+2cos8+4cos20+8cos38+ ... +2* Teos(n-1)9;
(i) cos © sin 0+ cos? O sin 20+ cos® Hsin 36+ . . . +cos*Osinmd.

() Let C=1+2cos8+4cos20+ ... +2" Tcos(n—1)8,
and S= 2sinf+4sin20+ ... +22 Lain{n- 18

\
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Writing cos 0+ /sin 0 =z and noting that cos rf +  sin rd =z,
C+iS=1+2z+47%+ |, .. +2°"1 2872

1-22)" . .
- the series being a G.P.,

_(1-2%2%0 - 2/z) _1-2fz-2nz04 2841 21

(1-2241 < 2/2) 1-2(z+1/2)+ 4
1-2(msﬂ—15mﬁ)-—2"(oosnﬂ+:‘sinrﬁ}_ _
+2"+1(cosn-16+fsinn—lﬁ)-
5-4cosh

Equating real parts,

- 1-2cos8-2"cosnd+ 271 cospn— 1 19

5-4cosb

(i) In this case the multiple angle terms are sines, so write

S=cosOsinb+cos® Osin 20 +cos®Bsin 30+ . . . +cos” B sin nh,

C=cosbcos0+cos?Bcos20+cos30cos30+ . . . +cos® 0 cos a0,
Ct+iS=zcosO+2%cos®0+23cos¥0+ . . . +z*cos",

3 nﬁ
=z°°30“ 7 c0s ),whercz=cos0+isine,
1-zcosh

2¢08 8(1 - 2" cos® &)(1~°%°)

-

(l-zcose)(l—-‘f":—e)

©0s9{cos B + isin6){1 - cosB{cost - igin®) — cos"B(cosn&+ 1smnﬁ)

_ ] + cos" 18cosn—10-+isinn—1 16}
1 - co5 62 cos §) +cos*

Equating imaginary parts,
=___~l+{c::us2 B(cos @ sin 0 - cos” 0 sin 78+ cos** 1 Hsinn- 1 6)
sind 8 +c0s B sin 81 — cos® 8 — cos™ 8 cos M9+ cos" 10 cog r - 1 6)
_ 1 {oosBsinﬂ—cos"*’e(sinrxﬂ—cosﬂsinn—lB) 1
sin® 9 —cos™*! 8 sin B(cos #0 - co3 B cos i - 1 8)}
1 {ous&sinﬂ~oos"*‘ﬂsinﬂccsn—1a }
sin® & +eos"t10sinbsin® sinn—-146

csFl,e{cosBsin 6(1 - cos” B[cos 0 coz.r— 1 &~ sin B sin 2— 1 8D}

=cot 9{1 — cos™ 6 cos b},
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EXAMPLES 10b
Write down the rth terms of the following series and in each case find the
swm (o n terms:
1. sin 84 sin 29 +sin 304 sin 40+ . . .
2, cosB+cos 20 +cos3B+coosdb+ | ..
3. sin® +sin36+sin20+sin 30+ . . .
4, cos 20+ cos 40+ cos 60+ cos 8O+ . . .
5, sin0+sin B+ dx)+sin (0 +n)+sin {0+ 3n) . . .
6. cosB0+cos(0+4n)+cos (B+$md+cos (O +2m)+ . . .
7. 1+2cos9+4cos 264+ 8cos 30+ . . .
8. 1+4sm0+Ltsin20+3sin30+ . ..
9 1-xcosB+x3cos20-x%cos36+ . ..
10. cos 90— 00530+m558-cos1’3+ c .

11, Find the sums; (i) E sin® dra;  (ii) z sin 3re cos dra,
12, Prove the resuli tan B cot 02 cot 29 and deduce the sum to n terms

of the series tan x+d tan dx+ S tan tx -+ tan 2x+ . . .

13. Prove the result cosec Zx=cot x—cot 2x and deduce the sum to
n terms of the series cosec x + cosec 2x+¢osec Jx+ . . .

14. Sum to # terms the serics
cos0cos B +cos? 0cos 20 +cos®Ocos 30+ L.

15. Provethat 1 (cotnﬁ cotn+10)=cosecu&cosecn+lﬁ and hence
find the sum 2cosec(:ﬁ)cosec(r+1)9.
1

16. Prove that
1+4C; c080+,Cyco8 M0+ . . . +5C, cos md =(2 cos 46)" cos (3r6).
17. Sum to 2n terms the series
sin 6-sin 0+ 3m)+sin(®O+3m)-sinB+4m)+ . ..
18. Use the result tan A tan B=(tan A - tan B)/tan {4 - B)— | to sum the
S€TICS

tan x tan Zx+tan 2x tan 3x+tan 3xtandx+ . . . +tannextann+1 x.
19. Sum the series
cos a+4C, €08 (2 + B)+ 0Cacos {2+ 28)+ . . . +oCs 008 (n+np).

20. Sum to n terms each of the series:
(i) sinh x4+ sinh 2x +sinh 3x+ . . .
(i) cosh x+cosh 2x+cosh 3x+ . . .
21. Prove by use of the identity sin® 6 =2(3 sin 0 — sin 36), that the sum to
n terms of the series sin® 0+ 4 sin® 36+ SIS 9B+ . . . is
1(3 5in ¢ - sin 376/3~71),
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22, Prove that tan™ (x + 1)}~ tan™! {x — 1) =tan"! 2/x® and deduce the sum
to 1 terms of the series tan™! 12’+ tan™? %than“l %Jr .. . all the angles
being acute.
FPower series. The sum 5, of 2 terms of the geometrical progression
atax+axt+ .., +taxt"l,

is obtained by finding the value of s4(1—x),

for ss(l—xy=a+ax+ax® ... +axr!
—gx—ax® ..., —ax» l—gx®,
=ag—agxh.
] —x»
Le. 3”=g( l-—-x_).

This method of summation can be extended to power series in which
the coefficient of x7 is a simple function of r.
The power series

at+(@+d)x+{@+2dx*+ ... +Hat+tn—1dx 1,

where the coeflicients are terms of an A.P. is of importance; its sum
can be obtained by the method used to sum the G.P.

For sn=a+(a+dx+(a+2d)xt+ . . . -|-(a+nT2@c_ﬂ“’
+l{a+n—1dxn1
xsp=ax+(a+dp3+ ... +{a+n—3 dxn?
+a+n—2dx» 14 (a+n—1 dxn.
(M —Xsp=a+xd+ x4+ ... x4 xvld—(aFn—1 d)xn,

e gt =T T e,
1—-x

_a~(@n—ldpxe  xd(l—xvY)

- 1-x (1—x)¥

This method will apply when the coefficient of x* is a linear function
of r. If the coefficient of x7 is a quadratic function of r, it will be
found that su{I1-~x)? reduces to a G.P. with extra terms at the
beginning and end.

Le. In

Ex, 6. Sum to n terms each of the series:

() 2+3.2+4.284.5 2206, 2¢ _ , :
(i) 24+ 3x+ 528+ 8x3 +12¢%+ . . .

{i) This sertes is of the form
2+ 3x+4xE+ 568+ L L.
where x= 2 and the coefficients are in A.¥.
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Write Sa=2+3.2+4.2245.28¢ ... +(ne1)2=L,
o= 2.243.2044.25+ ... +027 1+ (n+ 1025,
=D =2+2+2 22+ L #2128,
S={n+ 12 -2-227"1-1)

= na",
(i) The cocfficient of X =2+(1+2+3+ ... +r—1=2+}(-1)
=%~ r+4).
So it will be necessary to obtain 5.(1 — x)%.
Se=2+3x+5x 4 88+ L., ARt da,
(- x)sy=2+(x+2234 33+ . .. +n- 12" D=} —nt+ax"
e2-dm-ntd)m+(x+ 2%+ 3%+ L, ta-1xY.

(-3 = {2~ -+ 4" {1 - )+ (x+x2+ x¥+ L, TR ) P
2308w 31 -+ D) T

x(l xh- 1) n-1x
—{2 %("z 7+ 4t} —xP a-x2

Binomial seties and coefficients. When r is a positive integer, we
write
(I+x)r=cpteopxtextt o .. +ext+ .. topx?,

the coeflicients c;, ¢;, . . . ¢o being called binomial coefficients.
The values of the individual coefficients are, of course, known

nn—1)

co=1; &=n; Ca==g7 5 -

_np—1 ... @-rt+1),
o )

e cp=L
The summation of series involving these coefficients illustrates new
methods, some of which can be applied more generally.

(i) To prove (a) cy+c¢1+ey . . . +ea=2%
{b) CQ+Cg+C,‘ . o =CI+CS+L‘5+ PR =281

{a) This result follows by substituting x=1 in the expansion of
{1+x)=,
(b) In like manner, substituting x=—1 gives
Q=cy—oytca—cyt+ .. . +{—1Pc
. 5 even coefficients= 3 odd coefficients =427 =28-1,
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(ii} Series involving multiples of the coefficients. The methods of the
calculus are useful in these cases.

As (A+x)=cp+ex+ex®+ ... Fepx®, . - . (i)
on differentiating with respect to x, we get
Al -+ =g 1 2epx + 3%+ L L L FhcgxnTll

Putting x=1I, gives the result
¢y t2e,H3e+ L. FReg=n2%"1

Other series of this type can be summed by multiplying result (i)
above by a suitable power of x before differentiating. If the multiples
of the coefficients are fractional, integration can be used as illustrated
in the following example.

Ex. 7. Sum the series: (i) cg+2c,+3c,+ . . . +(n+ Dep;
(i) cy+3c,+5c,+ . . . - (2n+ Dey;
1
(fﬂ) Cn+%€1+%€2+ . e +n—_'§'_"—lfﬁ,.

() It will be necessary to multiply the basic result by x before
differentiation.

We have  x{l1+x)% =cox+ o+ ep®+ . .. +opx®TL
Differentiating with respect to x,

(I+x)+px(t + X L=y 2004+ 30232+ . . . +(nt+ Dep.
Putting x =1,
gt 201+ 3ea+ L. R (4 Teg =294+ 2012087 1(54 ),
(ii) This series can be written as the sum
Cot e+t .. tea+2e + 20+ . L.+ new).
Hence its sum =202 1=2n(p 4 1),

Gii) Integrating the basic result over the range x=0to x =1,

1 1
f(l+x)“dx——f (Botex+epx¥+ . .. + ok
0 0

. l_ n+tl_ 13 = _1_
Le. n+l(2 D=¢y+dc,+ict . .. * e
{iii) Series involving powers or products of the coefficients. Series of
this type can often be summed by taking the product of two or more
binomial series and picking out the required series as the coefficient
of a particular term in the product.

E.g. consider the series
(4) e o2+ e2+ ... Feal;
(b) C“€1+Clcz+02£‘3 "‘ P +cn— l(‘u.
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(&) As ¢r=cp—y, the expansion
{1+ =cytoxtext+ ... Teaxt

can be written
{1+ =ecpt+en- X+ ongX¥+ . . . Acext,
In the product of these two series, the coefficient of x® is

ettt Lo tea
Sttt L L Heg=coefficient of x* in the expansion of
{1+ x)2s
_ 2n!
“ntnt
(5} The serics coeyHeycy 0ot . . . + 010y is the coefficient of

x*"1in the same product.
2n!
eyt ettty t L L +Cn~1Cn=Wm‘

Ex. 8. Prove that ¢+ 2e2+ 3¢+ . . . +ne =2n-Dn— Di(z- ).
The summation of this series will require a combination of the methods
used in types (i} and (ifi).

(I+xP=grox+ex®+ ... +cax™
Differentiating,
A+ X Y=o +20x+ ... tacx*™ L L (D)
Also (l+x =catenqx+en_ex®+ . . . +epx® e | (i)
The coefficient of x*~1 in the product of the series (i) and {ii) is
o+ 20+ e+ L L L et

oo+ 2004 360+ L. . +nct=coeflicient of ¥* 71 in a(l +x)t 1
_nQe-1)t  Qe—iy
CEN IR CEDITE]

EXAMPLES 10c

Sum each of the series 1-10 to » terms:

1 1+2g+3a%+4a3+ . .. 2 1-243-4+ ...
3 4 5
- 2 - —
324 4DHEHEFEEP L, 4, 2+2+2=+23+ ..

5. 1-2cos0+3cos?0—-4cos®0+ ... 6 1-3x+5x2-T%+ . .,
7. a+tHa+ )+ Ha+2)+ Ha+3d)+ . . .
81.3+4.94+7.27+10.81+ , ..

9. 2-3+5-83+12— ...

10. 1+ 2x+ 43+ T+ 11x5 +
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11. Sum the series: () T+3x+5x2+ . .. +(2n-Dx*71;
(i) 1+3x+6x3+ . .. +ho(nt Dxm),
12. By equating coefficients of x" in the identity (1 + x)**1=(1 + xX1 4 x)*,
prove that .4 ,C, =,Cr 4+ 40y
13. Using a method similar to that of the previous example, prove that
ataCr =nCr+ 200+ 1 Comse
14. Sum the series: (i) g+ 2epx = 3epx®+ . L+ (w+ Dex™;
Gi) cg+ 2%+ Feax®+ . L. e+ 1DPon.
15. Prove that: (i) c,—20,+3ca— . .. +{- Dn+De, =0
(D) ey -20.4+3¢~ ... +(-1""The, =0,
16. 1f n is a positive integer, prove that
x+xTex e L+ x"=(x -2 - x).
By differentiating with respect to x, obtain the sums of the series
(0 1+2x+ 3%+ ., +px°7 %
(i) 12+ 22x 4 382+ |, hpfanTl
17. When n is even, prove that
ooty L L e =R AP (- 2P
Deduce the value of ¢y 2%¢,4- 2%, 4 . . . + 2P, in this case,
18. Prove that ¢, + 3eg+5c,+ . . . =2cp+de +beg+ .. . =L

19. Showthat c¢j-3¢;+de+ .. . +(- l)“;;-i-icn-- l

TS
20, Find the sum of each of the following series:
() 1%, + 2%y + 320y + . . . +Hlen;
(i) 1.20;+2. 300+ 3 .45+ - . . +n(n+ 1),

21. Prove that
=22 3ett L (Dol =(n+ 2020~ D n- 1.
22, Use the identity (1-xy{{+x*=(1-x%* to find the value of
et e®— L.+ (- 1Mk if nis even.

23. Prove: (i} 4o+ Feg+des+ . .. +£ﬁc,u_1=(2“-l)_f(n+ 1}

.. ¥ & Ly
Gy 2274331 L wn— =dn(n+ 1)
€ 01 Ca Cnmy

24. Use the identity (I + x}(1 + x)=(1l + x)»*7, to prove that
wCr tmCr oG+ mCr_anCe+ .0 0+ 2Cr =m 1 aCr.

28, Prove that cycr— cy0e_1+ Cofrmg— .+ » +{ = 1¥erey=0 if ris odd and
{~ 1f¥rey, if ¢ is even.

26, Prove that the sum of {n+ 1) terms of the series
ace+{a+dey + (a@+2d)ey+ . . . =20"2a+nd),
where ¢, ¢, &3, . . . are the binomial coefficients,
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Mathematical induction. The method of induction is useful in
establishing the validity of general results or theorems which admit of
successive cases corresponding to the numbers 1, 2, 3, . . . n. The
method, which only applies te prove a stated result or one which can
be comjectured from special cases, is particularly valuable in dealing
with finite series. Other applications of the method will also be
demonstrated in the following worked examples.

Ex. 9. Prove that the sum of the series
1.1042. 21433+ .. . nonl=(n+1)t-1,

Let the sum to » terms be s, and assume that s, ={(n+ 1}!- 1.
Then since the (n+ 1)th term is (n+ 1) . (n+ 1)1,

Snpr =+ -1+ (m+ 1) . (n+ 1)}
=+ 1L +n+ 1) -1 =(n+2)!-1.

This is the same function of (r+ 1) as 5, is of n, and therefore if the result is
true for n terms it is also true for (#+ 1) {erms.
The result is clearly true when #=1, and hence it is true generally.

Ex. 10. If un denotes the nth term of the series
] pL 3
iy S a2 i m T

prove that the sunt of i terms is H3 - us/n®).

Assume
1 I
=5 (3-78)
then
i 5
Sn+1“i(3—gz-) Rl PR
3.1 nt .
2 282 1(1+2.2%5 ... (+2n
. (n+1P
W+2.25 . .. (12080 + 20519
3 1 (o gy
=3- M+t 1220+ 12
2 2.1042.2) ... Qe e 1%

- a0

T3 1R 2
Hence if the result is true for n terms :t is also true for {u + 1) terms.

s my
But when n =1, & 1_2(3 l_")

So the resuit is true successively for v =2, 3. 4, . . .
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Ex. 11. The terms of a sequence uy, Uy, Uiy, . . . are given by the following
rules: wy=1; up=4; 3 =9; #a =3 .y~ Jtn_y+ Un_3 for all values of nz4.
Prove that u, =n®.

Assume the result is true for the values n—2, n- I, m;
i.€. y_s=(n—D% to_=(n-1% u~=n
Then Uy =38 3ty ¥ Uy g
=3t -3n-DP+(n-2)%
=+ 2+ 1=(n+ 12
Hence if the result is true for three successive values of » it ig also true
for the next value.

But the result is true for n=1, 2, 3, and so successively it is true for
n=4,5 8,

Ex, 12. If nn is a positive integer, prove that 7'(3n+ D — 1 is always divisible
by 9.
Let JE@=T3n+1)-1,
then S+ )=+ 13n+4- 1.
S S D= =18+ 4) - T34+ 1)
=T"21n+28-3n— 1} =9. T*(2n+ 3).

Le. Fr+D=f(m+9.72n+3).
Hence if f(#) is divisible by 9, so is f(n+ 1).
But F=%H-1=27 or 9.3

Since the theorem ts true for nn =1, it is true successively forn=12, 3,4, ...

d [log (x® + 1)] =2( ~ 1)*~Y{n - 1)! sin" 6 cos n,

Ex, 13, FProve that if nzz 1, I

where cot 0 =x.
Assume

P =%Q[[og (x2+ 1) =2(- 19" 1(n - 1)! sin® B cos B, where cot 0 =x,
Then

d d . .
Pary =y (o) =20= 1 "M = 1! o {sin® © cos nf)

d . d6
=N _1wm lipm_ 131 R i
A-1"Un l].dﬂ(sm B.:t:owrﬁ)ahf
= ~1)""(n~1)! {nsin® ! 6 cos b cos #f - nsin™ O sin nO}

1
(-

=2(- 1)"n! {sin"*1 8 cos Y cos #0 — sin®* 2 0 sin kb}
=2{ ~ 1y*n! sin" *1 0 {cos 0 cos 8 - sin © sin A9}
=2(— 1" sin**' Ocogsn+10.
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Hence if the result is true for the value # it is also true for the value n+ 1,

2x
But WeEL T
and when n =1, the given expression for y, reduces to 2 cos 8, where x=cot 8;
ie to Zx
B+

Conseguently, the result is true for # =1, and hence it is true successively
for all integral values of n.

EXAMPLES 10d

Use the method of induction to prove the following results:
1. 12432158+ ... nterms=4n(dn®- 1)
2. -!—+—I—+L+ C nterms="—-

1.2 2.3 3.4 n+1
3, 121428 4432 .7+ ... nterms =g+ 19+ - 4),
4, 1338451 . nterms =422 - 1).

1 } 1 n+3
T.2.3 234" 3 a5 " ”"’""S:«n:-’(l)(nfz)'

i s 7 Ha+2)
CEptEptE at o ML R

gl

1. ir' =lon(n+ IX2n+ 1)3r2+ 3n— 1).

G+ 3 1 1
8. 2r(r+2] T Mm D 2t D

LA+r-1 1 n+l
. ; ¢+ 2 (+D

LN 4 ntl
0.3 = ey

1 1 1 1 111 1
il. -i;+m+ﬂ_-.|?i+ PR +2ﬂ——l l—i'l-i“z + .. +2ﬂ— l.
12 1+ 2-D+3m-D+ . . . +aD)=3a(p+ n+2).

13. Prove by induction that x* - y* is divisible by x+ .

" 14. When n s a positive integer, prove that 10*+3 .47*3+ 5 is divisible
by 9.

15. The terms of a Sequence Ky, Iy, My, . . . are given by the rules:
=2, uy=6, uy=30p_y~2g_,
Prove that ty =228~ 1).

n
16. Prove by induction that Y (r*+ 3r9) =4ri(n+ 1)
1
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17. If fim) =3 +21 5301 prove that f(n+ 1) + 3f(n) =28(3n+3 1 5211y gpngd
deduce that {7} is a multiple of 14.

18. Prove that the sth derivative of 1/(ax+ &) is (- 1)®a! a"/(ax + D)**%,

19. The terms of a sequence uy, 1y, Uy, . . . are given by the rules:
u'1=*3; “==l: un=2un—-l+3”n-s.
Prove that =314 2(-1p"1,

20. If nis a positive integer, show that 4 , 6>+ 57+ when divided by 20
leaves a remainder of 9.

21. Prove that ‘—g;ﬁ(e‘ sin x) =247¢ sin (x + 1nr).

22, If 5, =1"+2"+3+ ... +, prove that:
M 53—52=0; (i) s5+5,=25%
23. A sequence is defined by wpig iy — 1205, =0 and u, =2, u, =34,
Prove that u, =2 . 3"+ (- 4"

24. Prove that g;n (x2e") =a" 2 {atx® + 2nax + nin - 1)}

MISCELLANEQUS EXAMPLES

1. Sum cach of the following series to » terms:
i B+4P+P1100+ .
(i) 1.23+-3.3%+5.43+7. .88+ _ . ;
(i) 1.2,4+2.3.5+3.4.6+4.5.7+ ...
2. Prove that
1B+ 2%m—- D+ 3¥m- D+ . . . +m(D) =m{m+ DXm+2).
3. The sum of & terms of a series is sm(n+ 1{3n*+ 23n+ 46), find the
nth term of the series.
4. Find the sum of # terms of each of the series:
(i) 1.3.5+3.5.7T+5.7.9+ .. .
(ii)1.3.5+2.4.6+3.5.7+ ...
8, Prove that cgee+ €10+ 05Ce+ - - - $ Lnagln =2+ 2! (n- 1.
6, Find the sum of 2» terms of the series
1o 58— L L,
7. By expressing the nth term as a difference of two partial fractions,
find in each of the following cases the sum to » terms of the series:
S 11 1 )
G 3tyatyst
. 3 5 7
(i} 1“.2’+23.3‘+3=.4’+ .
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8. Prove that 2. 7*+3. 5" - 5 is a multiple of 24,

9, Sum to # terms:
1.22+2.3%+3.48%+ ..
LI S
1.474.777.10"
10. Prove that, if n is even,
1 1 1 i 1 1 1
1 2+3—a+ ...—”22(—-—4———”—4- - +"")'

11. Sum to # terms, l+:—,1_cosﬂ+512cos 20+%cos o+ ...
12. If u,, the rth term of a series, is given by
=12+ PB4 5 L (2e- 10
tind ¥ u.

1

13. Find ihe sum of the products of the integers 1, 2, 3, . . . n taken two
at a time and show that it is equal to half the excess of the sum of the cubes
of the given integers over the sum of their squares.

14, Sum to # terms:
(D 1+4x+ T2+ 1085+ L.
Gid 1+4(3) + 832+ 13(3)°% +
15. If the sum of n consecutive integers is kn, prove that the sum of their
cubes is kn{k? + 1(z® -~ 1)}

16, If & =r(2r+3)+3.2", find 3.
1

T
17. Evaluate: () zr( ey W 2 e DeT )
18. Find the sum of the squares of all the odd numbers less than 100 which
are not multiples of 3.

19. Prove by induction that

B(l+3. 1)+ 23(1+3.29+330+3 .30+ ... nterms =470+ 15,
20. If ¢, ¢y, 5, . . . €y are the binomial coefficients, prove the resutts:
(i) 1+2c; +dcp+8e5+ . . . + 2% =37,
) 1+ 3+ ageatagea® - - + rea= (@)
21, If y =1+ x)¥ log (l -+ x), prove that, if n>>2,
gy 1220
dx“ (1+x~ x



214 FINITE SERIES. MATHEMATICAL INDUCTION

. 2 3 4 5
22, Express the rth term of the series ET'E_T'?JW:'Q"(). 1 + oy
in partial fractions, and hence sum the series (o # terms.
23. Sum to » terms:
) mn+ D+ 1 n+ 2D+ n+Dr+3N+ .. .
(ii} ! + ! + ! + o
mn+1) (r+1¥n+2) (n+2n+ 3}

24. Find the sum of # terms of the series whose rth term is #{r + 1}{2r +1).

25, Prove that the sum of » terms of the series:
sin & +sin (0 24) +sin B+ 44)+ . . .

is sin {8+ 1 — 14} sin nd cosec $.
26. If the sequence u;, g, My, . . . is defined as follows:
=1 =2, dupg=ti,
prove that iy =504+ 3(— ).
27, If (1+x)*=cy+ X +ex%+ . . . +cux®, n3>1, prove that:
() 2c,-3cg+deg— . . . +(~ 1P (m+ Deg=1;
() cotdeytdegs - .o 4o b cam (@I Dt 1)

28, Prove that the sum of » terms of the series

2n-2 (2n-2){2n-4)
I+2n—3+(2n—3)(2n~5)+ .

is 2n- 1.

i
29. If u, is the rth term of a series, find Zu, in each of the following cases:
1

@ 4y =rG+ 2D+ 8); (i) 1 ——

Lid *
30. Prove: (i) Z,— log r_t_l ~log (ﬂ_:_il)_;

Gi) i(rh 35} =33+ )%,
1
31. Prove by induction that, if n2 1,
a B 1
E(x log x) —n!{logx+l+4}+ - +,—I}-

32, Sum to » terms:
(i)l+3+5+7+..'
1.2.3 2.3.4 3.4.5 4.5.6 ”
() 1.0+2(n- D+IWn-D+4(n-N+ ... +n.1
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33. (i) The first of a set of # numbers in G.P. is 2 and the last is b; express
the product of the # pumbers in terms of «, & and .

(i) Defining a harmonic progression as a series the reciprocals of whose
terms are in A.P., show that if the pth term of such a progression is 7 and the
gth term is p, then the (p+g)th term is pg/(p+q).

34. Find the sum of the first n terms of the series

cos3 0 -3 cos® 30+ 3 cos® 90 - 4Ly cos® 270+ . . .

35, If the sequence iy, i, iy, . - . i defined by w, ~=1; #;=2,

uf+3+4”¢ ’4",-]—»
prove that u,=2°"1
36.Pr0vethat—l+—l—+_-l—+ L S
A1 F-1 &1 T T @ZaP-1 2+l

37. If Op =a+ 2p=/n, where n>2, prove that:
() cos®, +cosp+ ... +oosO=0
(ii) cost0,+cos2 O3+ . . . +cos?Oy=4n.

A8, Prove by induction that
A" e e o b
e sinbn) =(a*+ Y e"’sm(bx+ntan 5).

Ar274r-1 c .
39, Express — Ay in the ferm Ar‘+Br+r(r+l), hence
. 2rit2rt4ri-1
determine the sum z — A

40, Sum to p terms:

a

, 1 a
O Grmaren GraXis @ Qidkiran ~ " "
i) 1+3x+6a2+ 1023 +15x*+ . ..




CHAPTER XI
EXPANSIONS

Infinite series. A series in which the number of terms is allowed to
increase without limit is an /nfinite series.

If 2 is the general term, then such a series can be denoted fur.
1

Suppose Sa=wtlyFugt+ ... Fuy,

then if s, tends to a definite limiting value & as » increases without
limit or, as we say, tends to infinity, the infinite series is said to be
convergent and s is referred to as its sum.

Infinite series fall into three main classes:

(a) series in which s4 — a definite limit s as n—» co—convergent
series;

(5) series in which s, —~ <0 a5 n—» co—divergens series;

(c) series in which s, does not tend to a definite limit, finite or
infinite, as n-—» co—oscillating series,

Some impartant infinite series will already be known; e.g.:

i 1+ % +2!+31+ c e
x3 x‘*
(i) x— 5' ;, —
xF Xt
(iii) x—2+§—4 T
(iv) 1+mc-I—”(J'I l)xa—'-"("-l){” Doy . 7 not a positive
integer.

Series (i) and (ii) are convergent for all values of x, and their sums
are respectively &% and sin x.

Series (jii) is convergent only when — 1 <x<1, and in this case it has
a sum log (1+x).

Series (iv) is convergent only when — 1 <<x<1, in which case its sum
is (14 x)n,

Expansion of a function. The expansion of a function of x as an
infinite power series of the form

aptaxtaxd+ L, Faxt+ ..

is &an important mathematical process.
216
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The expansions of several functions have already been met and made
use of: it is the intention now to develop methods which will enable
the expansions of a wider group of functions.

The principal methods of expanding a given function which will be
dealt with are as follows:

{i) by the use of known expansions and the application of ordinary
algebraic and trigonometrical processes; ¢.g. partial fractions,
factorisation;

(i) by use of Maclaurin’s theorem;

(iii} by differentiation or integration of a known series;

{iv) by the formation and use of a differential equation.

As the basic theory of infinite series is beyond the scope of this book,
it i essential that the reader should realise that all the methods of
expansion to be used depend on the initial assumption that it is possible
to find an infinite series which is convergent, at least for some range of
values of the variable x, with a sum equal to the given function.

Algebraic and trigonometrical methods. These methods, depending
on a knowledge of the expansions of the basic functions (1 +x)*, e%,
log (1 +x), sin x, cos x, sinh x, cosh x, are illustrated in the following
examples.

Ex. 1, Expand tan x in powers of x as far as the term in x°
Csinx x-S L.
Teosx 1-xF24xval- ...
T T T N 1| B S S o ok P | o
=(x- 18+ plpxf— L {1+ - e L L)

+4};x‘(l—-115.x’+ .. .)’4- . }
=(x-1d+ it — L1+t L L)
—x+3-D+AE -9 .-
ie. tanx=x-+dd+&x® . ..

Ex. 2. Obtain the coefficient of X2~ in the expansion of log

tan x 1

1-x+x*
I+x+x®
As 1+ =(1+xM~x+x5:; (1-X3)=(-x)1+x+x;

1-x+x8
log ﬁj;-—:z—,ﬂog (1+x9-log{l+x}-log (1 -x5+log{l-x),

={log (1 +x% - log (1 - x»} - {log (1 + x) - log {1 - x)},

1 1 -
=2{x’+ j(x’)3+ P +2ﬁ(ﬁ)h 1+ - . .}
—2{x+%x’+ .*.+%_lx*—‘+ +:,T(-2:Tl).r‘("“3+ }
1 _ 1 }_ 4 .
r—1 3@-1 ¥2r-1

., Coefficient of x¥*% =2{
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Ex, 3. Expand e*™® = gs for as the term in xb.
Write  cos® x =1{1 + cos 2x),
Then  ¢50s'# =gi , gloom2s
—etb | aht—He+dczon ..y
=g, e—=Hl—dx24 .}
~e{l —x(1-4a2+ . J+dati-33+ .. B8- L),
=efl —xV+4xf ..}

EXAMPLES lia

Obtain the following expansions as far as the terms shown:
1. cosh x=}e*+ e ‘)=l+x=+::+ R

2. sinhx=4,_c(e’—e“’)—-x+;s+::+ ..

3 osecx = 1+;:+"::‘+ v

_}_zl+x’ l4x‘+

sin x T T

. logeosx=-f@—qlad - Aex® . .,

log sec x =dx%+ et + e x|
a‘=l+xloga+(xlgfﬂ)‘+(x]g$a)’+
log (1+e)=log2+dx+dat—yipx? . ..
9 costx=1-x2+dxt- A%+ ..,

10, tan Gr+x) =1 +2x+ 2+ E2+ .,

1. e'm===1+x‘+§x4+ﬂ-6x°+ .
12. log @i‘——w et .

N oamoa

g0

13. Bxpand —— e’ 7 8 far as the term in x4,

14. Show that, if powers of x above the fourth are neglected,
3 sm X
2¥cos x
15. Prove that log {1 - x+x®) = —x+3x*+ ¥+ Lot — af - 4® |
16. Obtain the first three terms in the expansion of tanh x as a power
series in x,
17. Express cos® x in multiple angles and deduce the first four terms in its
expansion.
18, Expand sin 5x cos x as far as the term in 2%
19, Obtain the expansions of (I +sin x)™! and (1 - ain x)™t ag far ag the
terms in x* and deduce the first three terms in the expansion of 1/(1 - sin? x).
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20. Obtain the expansion of log 1+cos x as far as the term in x4,

1+sin x
Use the method of expansion to evaluate the following limits:
21 hmxlog(1+x) 23, ]hne'—l+l.oE(l—x).
x>0 l-cosx x>0 sin? x
23, im log(1+sinx)~x
x»0 x’

Taylor's theorem. If f(x) is a funetion of x which is such that f(x + h)
can be expanded in @ convergent series of positive integral powers of h,
then

R+ W=FA thf )+ o fr e+ B frey+ L
For assume
fAx+=atah+aft+aft+alt+ ..., . . (@)

where a,, a;, a, . . . are functions of x alone not containing A.
Differentiating with respect to # and noting that

%f(x"'h =BdTﬂX) -%}? where X=x+h,

=f(X).1,
with similar results for higher derivatives, then
F(Xy=a,+2ah+3a i +da P+ . .. .. {id)
Similarly, Ff“(X)=as.2!+3.2ah+4 . 3a ¥+ ... . . (i)

FrX)=as 31443, 2ah+ ... . . . (W)
Putting # =0 successively in (), (ii), (iii), (iv), . . . gives
a=fiY &= = SO =g s .
", fx+B)= £ +hE(x) + 3 f”(x)+ e +]£f'(x)+ .

Ex. 4. Use Taylor’s theorem to derive the binomial expansion (x + B)*.

Take fx)=x"
Then FE ="l ) =nln-1x""% . ..
n(ﬂ 1)

s ="+ x4t Pl of S
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Maclaurin’s theorem, If f(x) can be expanded in a convergent series
of positive integral powers of x, then

SO=1Q)+ 3O+ 5, [ O+ 5 7O+ .

For assume
JX)=aytayx+taxi+ax+axt+ ..., . . (i)
where a,, a,, o, a;, . . . are constants.
Differentiating repeatedly with respect to x gives
S(x)=a,+ 2ayx+ 3a,33 +day ¥+ ... .. (i)
Frx)=a,. 2143 2ax 44 3ax®+ ... . . L (i)
U =ay.3'+4.3  2ax+ ... I (1))
Putting x =0 in (i), (ii), (iii), (iv), . . ., gives

@0 @105 @5 [ O a=3f O . ..
L 10 = 10)+xE(0)+ 7, r"(o)+— COF . R PO .

N.B. (i) It will be noted that Maclaurin’s theorem is the special
case of Taylor’s theorem with x replaced by 0 and % by x.

{ii) Uniess the repeated differentiation is relatively simple as with
such functions as e%, cos x, sin x, (1 + x)?, it is usually more convenient
to use Maclaurin’s theorem in conjunction with a differential equation
derived from the function whose expansion is required. This procedure
will be demonstrated in a later section,

Ex. 5. Find the first three terms in the expansion of log (1 + tan x).
Jtx)=1log (1 +tanx); Ff0y=0.

fx )_l+tanx S0)=1.
ey 2 5ec® x tan x(1 + tan x) -sect x  sect x(tan® x+2tan x - 1)
f7x)= {1 +tan x)? B {1 -+ tan x)?
2sectx
-sec’x—m—“——-w, f (0)——1.
oo 4 sect x tan x {1+ tan x)3 - 4sec‘x(l+tanx)
Fx)=2sac? x tan x - 0+ tan 0P

=4,
Llog(letanx)=x-3a%+ 548 . .
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EXAMPLES 11b
Use Maclaurin®s theorem to obtain the following expansions:

Locosfx=1-xdt+ixt ..
2. log (1 +a®)=x2—Jxt+dat . ..

3. sinhx=x~1—i x’-lrl Do S

4.c05hx—l+ x"+ ol
5.e“*”—l+x+-lrx’ %x‘...'
6 > —1+ixt. ..

sin x

Totan tx=x-Iad+ia5- L.,
8. sin™! x=x+%x"‘+ ;‘%vx"’ A
Use Taylor's theorem to prove the following results:

9. cos {x+ A)=cos x+hcos(x+}n)+2l,h= cos {x + =)
+31'—!k°cos(x+=}n)+. -
10. logsin (x+ h)=logsin x + A cot x—%h’cmec’x

1
+§k"cotxoosec'x ..

k +J‘f x
a-apt -

12. ftany = :%;, expand y as far as the term in x%,

11. sin™ (x+ K)=sin T x+

13. If log y =tan™! x, find the coeflicient of x® in the expansion of y by
Maclawrin’s theorem.

i4. Use Taylor’s theorem to obtain approximate values of: (i) log (1-001);
(ii) sin 30° 1’; (i) tan™* 1-02.

15, If tan y =1 + x + 3, show that y —Irn+dx-+3x? .

16. If fix), g(x) are such that f{g} =g(a) = 0 and g'{g) # U prove that

Slad+ 21! (@) + :}—!h’f “ar+ ...

fla+hy_
£@+h )y 51] kg (@) + ;—, Re@+ ...
Deduce that A9 _r@,

im ——

rrag() g

17. Use the result of the previous example to find the following limits:
sin 2x lo op X, 8- tan”! x

(i) lm x (ii} xh—Tﬂ (m) Ilrn oS (v} xh—Tu Syl

18, By repeated use of the result in Qu&stmn 16, obtain the limit, as x>0,
xXceosx -sinx

of —4




222 ' EXPANSIONS

Expansion by differentiation or integration of a known series. From a
known expansion it is possible by differentiation and integration to
derive new expansions, for it can be shown that if a power series

2 anx™ is convergent for some particular range of values of x and has
a sum s(x), then the series obtained by differentiation and integration
are aiso convergent for the same range of values of x and have sums

$'(x) and f S(x) dx respectively.
0

Ex. 6. Using the expansion of {1+ x%)~1 derive the expansion of tan™" x,
If -1<x<], A+t =1~ pat-x84+ | ..
Integrating with respect to x,
tan™l x =C+x-dx®+{xf —2xT+ | .,
Putting x =0; C=tan'0=0, assuming the principal value,
tan x=x— 45+ fx0 - dxT+
It can be shown that the expansion is also true for x =1 and by using this

value we have,

In=1-4+4-% ...
and hence the value of « can be obtained to any degree of accuracy.
Ex. 7. If y=sinh™ 2x+/(1 + %), find % and hence obtain the first three

terms in the expansion of y.
Let y=sinh™ 2x4/(1 +xf) =g+ mx + apx®+apd taxt+apxS+ . . .

Then %=Tﬁ_}i}=a,+2agr+3a,x3+4a‘x3+5asx‘+ .
2 _
But m=2‘(l+.¥z} *=2{1—-}x’+-ﬂ-x‘ . e .}.

Comparing coefficients, a,~2; ay=-4 a=+%; ...
2yg=~0; =0, g,=0:...
Also dy=sinh™ @ =0,
" sinh 7 2x /(1 o) =2 - duB 4 Bt L L

EXAMPLES ii¢
Apply the processes of differentiztion or integration to derive the following .

results.

1. From the expansion of sin x derive that of cos x, and vice-versa.

2. Repeat Question 1 with the functions sinh x, cosh x.

3. From the expansion of (1 +x)™ for - 1<<x<1, derive ihe expansions
of: () (1+x)7% (i) log(l +x).

4. Expand 1/+/{1 - »% if |x|<<1 and deduce the expansions of sin x
and cos™ x, assuming principal values.
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5, Use the expansion of sin™ x to deduce the result
m 1 1 1.3

$73t3. 3 2t 4. 587

6. Deduce the expansion of sinh™ x from that of 1/4/(1+x%), where
x| <1.

1. Differentiate tan™1 =

' 1-at

of the function if - 1<x<C1.

8. Use the method of the previous example to obtain the first three terms
in the expansions of each of the following functions:

1+x 1 e
-1 7 -1 + -1 _
(i) tan - (i) sec T2 Gif) sin~? 2x4/(1 - 2%,

9, Obtain the expansion tan? x=x - {x3+4x% ~4x"+ . . .; assuming
it is true when x =1, calculate the value of = correct to two decimal places,

10. If — 1<tx <, sum the series 1+ x+x%+x3+ . . . Deduce the sums
of the series:

and use the result to obtain the expansion

@ T+ 2x+3x2+423+ ..
(i) 1+x+}x‘+}x"+ .l

1
(1n')x+ x’ 2~§x‘+

Expansion by the formation of a differential equation. This method
depends on first obtaining a linear differential equation satisfied by the
given function f{x). Then by assuming

Jx)=aptaxtaxt+ ..
and substituting for f(x), f'(x), f{x) . . . in this differential equation,

a series of equations are obtained from which the coefficients
Qo 1y @3s + + + TXCEPL ODE OT two at the beginning, can be determined.

Ex. 8 Jf y=sin"l x, prove that (1 - x*)ys - xy; =0 and hence obtain the
first three terms in the expansion of sin™! x.

y=sin"1x,
_ 1
Differentiating, -
8 N=a-%
ie. (1-x5p2=1.
Differentiating again and dividing by 2y,
(-xy:—x3,=0. . B
Now assume y=ao+a1x+a,x3+aax3+a‘x‘+a,,t5+ R
then o=+ 2a,% + 3a, 3 + daxd + Sagxt+ L L,

yp=2ay+3. 2opx+4 . Ja x4 5. dagX®+ . ..
Substituting in (i),
(1 - x*X2a, + 6agr+ 122"+ 20apx" . . )}
=x(ay + 209% + 3aax? + dap + Saget+ L L L)
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Equating coefficients, 28,=0; ay=0.
bay=a;  a3=3a.
—2a,+ 120,=2a,; a,~4a,=0.
_603'}"2005 ==3ﬂa; y ='i9ﬁag.

But @y =Y0) = 0; 2, =p{0) =1.
- go=a2=a‘=0; ﬂ']_=l, ﬂl“%t as'iab"
Le. sinx=x+ 30 B L L.

More general method. A better method of obtaining the expansion
of a function f{x) requires a general relationship between the values of
the derivatives of the function when x=0,

The determination of this general relationship involves the use of
Leibnitz’s theorem. This theorem is a generalisation of the product
rule in differentiation, and its basis is seen from the following, where
u, v are functions of x and suffixes are used to denote differentiation
with respect to x:

(uv),=uyv-+uv, . . . the product rule.

(uv)ly= (4 ¥) T (vy)y,
= Ha¥ -+t ¥y + 1y 7y - B,
=uwyv+ 2uy vy - uwg = th¥ 4 o Chay vy + vy,

Similarly,

(uv)y = uyv+ 31y, + 30y vy + uvy = 1,V + 5 Cratgvy + g Gty vo + utvy,

Generally, if » is a positive integer,
(l“’)n =up¥+ nC]_un_ 1Y1 + uCzun —a¥g + .ee t nCrlln _¥rF ... OV

This result is Leibnitz"s theorem,

The use of this theorem in conjunction with Maclaurin’s theorem to
obtain the expansion of a function is illustrated in the following worked
examples.

Ex. 9. If y =e*™'* prove that
(14 xB)pe - {1 =200 - Dx}p— + (0= 1) - Dy, =0
and hence find the first six terms in the expansion of y by Maclaurin’s theorem.

y=gttaTls
. . e gtan~tz
differentiating, = T3 =
ie. {1+ xz)yl =y,

To obtain the required differential equation it is necessary to differcptiate
the above result (n— 1) times.
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By Leibnitz's theorem, the {# - Dth derivative of the product (1 + 2%y, is
(14 x5a + 01 C12%n—1 + u—1Ce2¥Pn—n
subsequent terms vanishing.
(LX) + 2 — Dxpn— g + (0~ 10— 2)Pn—pg=Yn—y

or, {1+ 2%y, — {1 - 2(n - Dxfya-y + (n— D{n—2ya—3=0.

Puiting x =0,

R0 — (0 + (1 - 1)t~ 2}y -g(0) = 0, true for 222, . (i}
By Maclaurin’s theorem,

1
y=y(0)+xy1(0)+5x‘y,(0)+ . ;—, Pt (1) .

But, WO == =1, 3,(0) =y(0) =1.
Using result (i), a(0) =y (0)-0=1;
¥a0) =y () -2 (0) =~ I,
740} =y5(0)— 6y,(0) = -7,
5(0) =7,(0) - 1275(0) =5.
Sop=lbxt it %x’— —21_;x"+-,1;x‘

sinh tx 2 2.4 2.4.06 7
Ex.lo. Pfol’erhﬂr v,(l+x’)==x'-ixa+§-'—§x5—§-———-——j +
sinh x
" s
i.e. 31 + ) =(sinh ™! x).
Differentiating with respect to x,
2 sinh™ x
2yyy (1 + x4+ 2xpt = WiETia
Dividing by 2y,
A+®y+xy=1 . . . . . . {D

Differentiating (» - 1) times by Leibnitz’s theorem,
(1 + 3P+ (1= 1)2xpn—y + (= DNt = 2)¥p— g+ ¥Pa—y + (0= 1)ya—g=0.
Putting x=10,
y@)+ -1y, _y@=0. . . . . . (i)
Also #W0)=0 and bence from (i), yp=yy=F= - . - =0.
From (i), »,(0)=1 and hence from (ii),
y=-2%  y(0)=4".2%5 y,()=-6.43.2% etc.
By Maclaurin's theorem,
y=0)+ xy (0 + 21—!x’y2(0)+ vee + :—!x’y,(0)+ .
. sinhlx 2,80, €82,

O T I Vel S T
22,24, 2.4.6 ,
=X 1Jc+3 5x5 3"5'_‘,x+...
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EXAMPLES i1d

1. If y={1 + x)", show that (1 + x)y, =ny, and deduce the expansion of
(F+x)".

2. If log y =tan™1 x, show that (1 +x®)y, =y, and hence obtain the first
four terms in the expansion of y by Maclaurin’s theorem.

3. If y=cos mx, prove that y;+mPy=0 and deduce the expansion of
Cos mx.

Obtain lincar differential equations with rational coefficients satisfied by
the foliowing functions and use them to derive the expansions of the
functions:

4, ™. 5. 2%, 6. log (1 +x). 7. sin7!x.

8. sinhmx 9 coshms. 10 tant P 1n, sinhlx,

12, If yp=tan ) x{1+x%), prove that (1+sx%%p +2x(1+a0y=1 and
deduce the first thres terms in the expansion of y as a power series,

13, If y=(sin"L )2 =a,+ax+ ax®+ax®+ . . ., prove that
(1- Dy~ xp~2=0
and deduce the values of 2, a;, ap, a5, a,. Show also that
(1 - xyu4g— 220+ Dynsy - rty, = 0,
and hence prove that (n+ [X# + 2t g =12,
14. If log y=sin! x, prove:
@ Q-2 -xp-y=0;
GD) (1= x®)ynsa= 20+ Dx¥nsy— (@ + 1)y =0,
Deduce that if y=a,+a,x +ax®+ . . ., then
-+ D+ Day s =M+ Da,.
15 If y=(sin ' x)® =a,+a,x+apx®+apx®+ . . ., prove that
(n+ 1}n+ 2)an 4y =r3a,
and deduce that
2«8 2t 4‘

(sin‘lx}’— + Zx‘ —_— 2t

16, Ify-mn(Zsm‘lx)-uao+alx+ 'x’vl»a’x‘+ N

G (1-29p;—-xp +dp=0;
(i) (1~ x®yps9— Qa4+ Doyusy+ @ - nl)y, = 0;
(iii) autq+{4-r¥)as =0.
113 1.3x% 1.3. Sx"

17. Prove that log {x+ +/03+1)} =x - 337745 74677

18. If 4xy,+ 2y, + y=0 and y=1 when x =0, show that

y=1- i L. =COS /X,
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19. If (x— xWp,+ (1 - x)y; - y =0, obtain y in the form
gt apx+agx?+ ., .
20. I 2x(1 - X)ya+ (1 — x)p; + 3y = 0, prove that a particular solution is
kol P D

y=1—3x+1—.-3+ﬁ+3—-;i+ R

MISCELLANEOUS EXAMPLES

1. Obtain the first four terms in the expansion of tog {1 - x + x%.
2, Find the coefficient of x' in the expansion of 1fs*+8.
3. Obtain the coefficient of x¥ in the expansion of cos® x if r is even.

4. Find the first three terms in the expansion of log(2—cosx) by
Maclaurin’s theorem.

5. Find the coefficient of x* in the expansion of (1 -x+x*-xN1 in
ascending powers of x.

6. Usc Maclaurin’s theorem to show ;hat
logsec x =43+ dpxt+ Joxb+ . ..
7. Obtain the first four terms in the expansion of e*40 = a5 a power series.

8. If x is small, prove that 4 log ;—j—g - gin {x4/(1 + xN}=dgab.

9. If logy=tan!

Xy show that (1+a%)y;~2y and deduce the
expansion of y as far as the term in x5,
10. Prove by Magclanrin’s theorem that
log(l+xsinx) =x*-4x4 , .,
11. Expand £'%® * gg far as the term in x%
1

12, Fmdthccocﬁimemsofx,-t’.x“mlhcexpmswn"fv (1 - 2xcos 0+ %)

in ascending powers of x.

13. Obtzin the expansion of log : t:::: as far as the term in X%,

14. Prove the results: {i) tan™lx = x -3+ 18- , | ;
@) g =tan}+tant -
Deduce the value of x correct to § places of decimals.

15. Find the limit as x tends to zero of (tan x - x)/{x - sin x),

16. Prove that if y =log cos x, then y,+2p,v, = 0. Hence, or otherwise,
obtain the Maclaurin expansion of log cos x as far as the term in x®,

17. Prove the results:
@D e =l rx+dat-d*-43xt . .
(D (Q+2)Y mes 0 Q¥ a) p ot S+ 3x1, .,
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18. Expand log (1 + sin x) as far as the term in x® and deduce the value of

log (1 + sin x) dx correct to 3 decimal places.
i}

19, If logp=14+3x- &x*+ Lo . ., show that, as far as the term in x*,
y=e(l +3x - 322 + %),

x 1. 1% 1
20. Prove that ;I—_:i ’“1——2—\:4—6 T!—go ;{[ P

21, Calculate the limiting values of the following functions as x - 0:

o 1-cosx . x x L1
(i B e (ii) fog (1 + 5 (i) g Gv) )—:ucot x.

22, Show that 0 cot 61 - 185 J505, if 8 is small.

23, If y =sin™ x, prove the results:
{0 (1-xNyy-xp,=0;
() (1 - x%pnrg— 20+ Dxyee, - iy, =0,
Expand y as a Maclaurin series as far as the term in x®.
24. By writing 1+ x + 22+ x3+ x4 =(1 - x*)/(1 - x), obtain the result
log(l+x+23+ 3+ =x+3d+ ¥+ Lot - $afr Iaf L
2%, If tan y =1+ ax + bx¥, expand y in terms of x as far as the term in x™
26. Express {1 +x)'** in the form ¢/ and deduce the result
A+a**=l+x+x+43+ ...

27, Find constants a, b, ¢, d such that the coefficient of x" in the expansion
of (a+ bx + cx3+ dxDf(l - x)* is i*.

28, If log y =xy, find the values of y, and y; when x=10. Hence show
that the Maclaurin expansion of y in powers of x is y=1+x+3x . . .
log (1 +x sin x),

cosx -1

. ¥ y =xe % cos x, prove that ady,+ 2x(x— Dy, + 2% - x+ 1)y =0 and
deduce the first three terms in the expansion of v,

31. Prove that for |x| <1:

29. Find the limit, as x tends to zero, of

L8 _ 1-xcosf |
@ gxﬂms"e_l—hcosﬂ+x=’
o S o xsn®
@y %x = v cos 6+
1+xy8 .
32. Prove that (m) =1+6x+183+ . .. +@EEDxt+ L., 0f
|x| <1,
e o A log(efreTt 1)
13, Evaluate the limits: {1) ll_::lo TINE (i) xh_r‘t‘lu ———~—-—~10g s %
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34. Prove that (1+:;)'-e(1—21"+21—:l,-—52, K

35. Expand the function 21301::5 in powers of x, up to, and including

the term in x5,

36. Show that, if esinx=aytaprt o aptt ... b awt
then @, =0 and a,,., =(~ 1*4".
I I {cosh 2 (1 + )P =gyt apx +a@x®+ . . . +ax™+ ... prove that
(n+ 14208+ Dagy + e =0,
38. if x is small, show that an approximate value of flog(l+x)]* is
* = dnxntly Ln(3n 4 S)xnta,
-3

(ii) log tan (4 i) =sgin x+} sinf x4 Loindx+ . .,

if 0€x<nf2.
40, If y ={x+ v/ (L + 2%™, prove that:
@ A+ 23y, +xy, - nfy =0;
(i) 1+ xMpnsa+ 220+ Dynsy + (2 - 1)y = 0.
Deduce that

y=l+mx+ m’x’+—-m’(m’ 1s)xs+_ mE(m® - 2xb e,



CHAPTER XII

SYSTEMATIC INTEGRATION.
PROPERTIES OF DEFINITE INTEGRALS

Basic theorems. There are two basic theorems of integration which
together with a knowledge of the common standard forms enable the
evaluation of a large number of integrals.

The first of the theorems can be expressed in the form

f F{f(x))f'(x) dx = f F(u) du;
a result which follows from the substitution u=7{x).

An important special case arises when F( u)=-= L

Then 8 dx= =logu or log { A(x)} te.
1)
Ex. 1. Integrate: {i) 4+sm§ : {iD ii:%‘, (i) 1/(1 x‘)’ {iv) sech x.
(i) _Mg _‘{I—‘.—, whm uasmx
4 +sin® x 4+
=4 tan"! (4 sin x) +c.

- I-tanx cOS X — smx _ .

@ [ iFaax | m dx ~log (cos x+sin x) + <.
4w Tarem =2 [ v v

=4 sinh™ (%) + ¢c.

@) fsechxdx 2[€,+8_, 2[&,“

=2]m’ thrc H=e’,

=2 tan~1{e?) +¢c.

The second theorem, the theorem of integration by parts, follows from
the rule for differentiating a product and can be expressed in the form,

f 1'(x) F(x) dx = Kx) F(x) — f 1(x) F'(x) dx.
230



INTEGRATION BY PARTS 23]
An important special case arises when '(x)=1,

then fﬂx)dx =x Fx) — [xF’{x) dx.

Eg. flogxdx =xlogx — fx}:dx=xlogx—x+c.

The method of integration by parts has wide applications and is
particularly useful in dealing with integrals involving inverse functions,
logarithmic functions and mixed functions such as x* sin mx.

Ex. 2. Integrate: (i) lﬂfns—x; () xsinxcosx; (i) sec”lx.

. 1 1 141 1 1
i j;,logxdx-(hi) log x + f(;))—cdx-=—ilogx-;+c.
(i) Write sin x cos x =% sin 2x.
Then fxsinxoosxdxm-} x 5in 2x dx,
=i{(—-}oos2x}x+{-feos2xdx},

=-Lxcos2x+}sin2x+e.

(i) f sec x dx = (x) sec™ x — f Jﬁ:,_‘_‘%,

=xseclx—coshix+e.

EXAMPLES 12a
Integrate the following functions with respect to x:

1 s/_(li;i"‘f 2. xe*". 3. !‘-’?-
4. cot 2x. s, PnEil, 6. jt’;h%,’;
7. x/(3+ 1), 8 (x- 1v/(x¥-2x12). 9. x(x®+a)im
10. ‘% co8 /%, 1L x®e= 12. tan 1 x.
13, sinh ! x, 14, xsin~lx, 15. x3 tan71x.
16. cos™! i 17, ;—alog (341 18. cosh x sin x.
19. (log 2", 20, %,-
Evaluate the following integrals:
a1, 1 xdx j" Xdx
o V(4—x% b VR +1)

nfx{/x%l)’ (et 3+ 1 =u%). 24, [{xlogx)’dx.
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lf' i
Prs ] sec? x dx, 2. f xde

o 2+tan'x , [+cosx

i " 2
2’7.[ /(L +5sin x) dx, (let tan dx =), 23,] sin-1 (l_x_g) d.

0 A -

d2y dv du a2

29. PI'O\'elhat f{t‘-i-;gdx=u‘_fj:_véf-_t+ va?dx.

30. Use the method of integration by parts to find:

(i)fcoszelog(n tan 6) d9: (i) fef‘“i”

dx.
1+cosx

31. Prove that f 1"’—5‘ dx =4 log (g) log (ab).
¥ ginxcosxdr

— = o .
cos®x+3cosx+2 ed

3
32, Show that [
it

Important algebrsic integrals

Two of the most important forms of algebraic integrals are those
involving

(i) rational functions; (i} the function +/(ax?®+&x+c).

The former are integrated after fiest being expressed in partial
fractions of the types

A B 1.

@ x5 ®) Gxipm nl
Cx+D Ex+F

(0) axt pxr e (@) (@t bxacp #1.

Type (a) integrates to a logarithm but care is required if the range
of integration makes (ax+ &) negative as log x is not defined for x <0.

E.z. f -3% does not equal [Iog {(x— ])] _3’ it equals
8 -2
[ 7 Do) 1o

-8
aln—fax+ Bt
Type (c) is integrated by expressing the numerator in the form

Type (b) integrates to

PQax--b)+ Q.
Ix+1 A +1)-1
Eg f?—%x«.‘-l dx_fzx”-%le— ax,

~Bog et a1y f,dx
_\ilog(,\ Fx+1) 2['(;_}_*)2.;_%’

=% log (x*-+x+1)— 1 tan! e

73 oy e
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Type (d) is first dealt with in a similar manner to lype (¢) and

the resulting integral f (E.vc_‘:?-%:g)_" is evaluated by integrating
dx
| @ berapa by pats
x+1 _ 2x dx dx
e ] (=
1 . dx

T+ JOF X

l.dx _ (x) 2x dx
Then 3% _(x}mi-'_[(li—r’)*

X 21 +x4)—2
“'1+x=+f (1+vc=)2 ax,
1+ﬁ+2]1 2[(1+~T)*l

. dx X -i—- dx
'f(l'l‘x’)’_Z(l—l-x’) 2 /it

+4tantx+te

X
T2+ x%)

x -+ _ 1 -1
Hence I(Tﬁ’}_’ dx=— o{ +x’) 4% ,)+§tan x+e.

Ex. 3. Integrate: () s @D e 1),

(i) By the usual method,
x _ 1 1 i
x‘+x’+l='sz—x+l)__2&’+x+l)
dx 1 dx
x"+x’+l 2 HFox+l 2/ Frx+?
LI ax-1 1 p2x+1
=—— tan - tan 1= 4

43 v1 443 '3
" . de . e _
{ify The integral f ey is simplified by writing x* =u.

where x —u.

fx(x’+l)=' 2fu(u+1)3
1 1 1 1 1

But roFE) ns=:r;+'r{u—+'1?“r—u+n'='
) du 1
.- LI(IHI)’ =log 1 - log (- l)+ 2(“_1)‘
2u+3__ o u+l
BETTTIS MG
Le. dx 2x2.+3 PoE |

+ €.

TELTE AT IR 0B
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Integrals involving the function +/(ax?+bx +¢)

Special cases. If a=0, the function reduces to +/(bx+c) and the
substitution bx+ c=u? will be effective.

If b=0, the function reduces to one of the forms (=~ x%),
V(e*+x%, 4/(x*—«?) and the respective substitutions x= o sin 8,
x=wsinh 8, x= o cosh 0 are usually effective.

General forms. Writing R=ax?+bx+c, the following types of
integral will be considered:

@ [T & [Eax, © [vRax;
@ [@xinvRas @ [P e [

Type (a). By completing the square for the function R, this integral
can be expressed in one of the standard forms.

1
Ex. 4. Integrate =B}

(x - afx—by=x1- x(a+b) +ab,
={x—Ha+5))2+ab- Ya+bp,
={x - Ha+ B}~ b-a)p.

. dx _ dit _ R PP
"fy/{(x-a)(x—b)}—[-\/(u'—a')' where u=x - Ha +5); x=Hb-a);

=00$h_" I_‘+c =003h_l gx____wl_;. e,
o b-a

» b>a.

Type (b). This integral is dealt with by expressing the numerator in
the form A(2ex+b)+ B, where A, B are constants.

It should be noted that integrals of the form [ J J;T—g dx reduce to
this type when the numerator is rationalised.

x-1
Ex. 5, Integrate 73
~1 x—1 x-1
We have \/ 2T A Hx -} VB x=2)

. -1, 1f 2x+1 3 dr
" x/x_fzd"’zi VoA - %® 2[«/{(::%)’—%}
=v (@2 +x-2)- % cosh242x+ D +c.

Type (¢). The integral f +/R dx is evaluated by using the method of
integration by parts with unity as one function,
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Ex. 6. Integrate +/{x*+x+1).
I=[1/(x’+ x4 Ddx=xy/ (e + X+ 1)-f—x(-3i‘i-
vix+x+ 1)
Now express the numerator x(2¢+1) in terms of (x*+x+1) and its
derivative (2x+1).
We have, M+ D=3+ x+ D -Hx+ 1) -3

, 10 2+l 3 dx
A !=x\/(x'+x+1)-1+z 4hux/(x‘+x+lﬂ) dx+4f\/————"—{(x+%),+%}

Le. M=xy/G+x+ 1)+ y/(ei+x+ 1)+ 3 sioht 21,

V3’
I=32x+ D/t + x+ 1)+ 3 sinh™t 2%*31 e
. Type (d). By writing gx+r in the form A(2ax+5)+ B, where 4, B
are constants, this integral reduces to one of Type (¢).

Ex. 7. Integrate x+/(x+x+ ).

fx\/(x’+x+ l)dx=§[(2x+ 1)V(x*+x+1)a‘x--}fw/(x‘+x+ 1) d.
But

«}](Zx-kl)w/(x‘+x+1)dx=£[1/u du, whete s=x2+x+1,
=hit =4 +x+ 1IN,
and
}f\/(xﬂ+x+ 1) dx =4+ DA/ O+ 3+ 1)+ 75 sioh1 2"‘74;' from Ex. 6.

Hence

fxv’(x’+x+ 1) dx =303+ x+ DE—- 32x+ DVES+ x4+ 1)
L.y 2x+1

- & sinh? 1;1-3

Type (¢). This integral is obtained by expressing the numerator in
the form A{ax®+bx+ )+ B(2ax+b)+ C, where A, B, C are constants.
Of the resulting integrals ene is immediately determinable and the
others are respectively of types (¢) and (a).

An integral of this form has been evaluated on the right-hand side
of the working in Ex. 6 above.

+c

: dx . )
Type (f). The integral f (q—le_;)vi is evaluated by using the
substitution gx+r= ;-

. dx
Note also that an mtegral of the form f W reduces to

two integrals of type (f) if 1/(px®--gx-t r) can be expressed as the sum
or difference of two real linear partial fractions.
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. o dx o | d
Ex, 8, Integrate: (”f(l+x)\/(1+2x-x")’ (")f(x‘m~x—2)\/(x’+l)
. 1 _l_
(i) Let 1+x=;, iy = r,dr.
afaiaafl_ )_(!_ P )
Then 1+2x-x 1}-2({ i ; 1 2+r A
=‘%{~ 1+4¢- 26,
. dx _ i
'[(l+x)\./(l+2x—xa)— «./(-1+4r~2.'*)’
| df
vz VE-GE DY
= — Ji Slﬂ_l' ‘\/2(! - 1)""’0,
L XVR
\/2 sin 1l+x+c'
.. 1 1/ 1 1
(i) We have ;é-x_'fa(;—z“m)'

" dx R ]
: f(x”—x— D2+ 1) ‘3[(4-- 1) j!(x%— DVGE+ 1)
=3, - I).

Using the substitution x - 2 =}.

L= ‘[v(sman) vsfv{m H A3

2x+l
.-_——--_ -1 = =
75 sinh™ (51+2) xf5 sinh—1 23

.. . . 1
Similarly, by using the substitution x + 1 =

I al-x
I,-——-—-v.—zsmh s

dx 1 41 1. 2+l
](xz—x HVEL D 3{vzs nh? 1‘“‘753'“"1;:—2}”

EXAMPLES 12b

Integrate the following functions:
1 1 1

by e | r )Y ¥ eIy
a2 x _
i ey S @ o 6 G- D
x H x+1
T il ey bl o oy 1o
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o el =i

B e 14. x'(;sz.‘ﬁf' 15. F%’

16 e vy a'ﬁf

a «/ For W oaThew M v

22, {x(x+ D 23, Xl gy X
{(x— 1/ (x+2) Vit 1)

= Wnlr%—l) 26. (x2+1x+12)¢(x+1)'

. J.Wmlm B GG

29, (Wm, at>-ht 30. i ,\/ ; E:

. TR ¥ (xi'!-' iy

33. Evaluate: (i) f (x(f I{iff @ f ay :lzs;xgsm 5y

34. Integrate: (i) {(x* aXx-Y (i) {(x~aXb- x)}‘*, b>a.
a5, Evaluate f ] dx

dx
36. Prove that (x+2)\/(2x’+6x+5) =log 2.

37. Evaluate: (1) f (§+?) dy; (i) \/{(b x¥x - a)} dx,
0 where 0<a<b.

38. By rationalising the denominator of the integrand, evaluate

dx
f x+VOEFTY

dx
(Lrexl 1 on ~Fanh i

39, Prove that f

o dx
40, Evalnate: (i) fo @2+ ety @ va(5ﬂ~4x+l)'

Trigonometric integrals. The following types of integrals will be
considered:

{a) integral powers and products of sines and cosines;

{b) integral powers of tangent and cotangent;

{c) integral powers of secant and cosecant;

{d) the imtegral f : -ITEEG_} and allied forms.
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Powers and products of sines and cosines

The integrals f sin® x dx, Jcos® x dx. In the case where n is an odd
positive integer these integrals are readily evaluated.

E.g. sin5xdx=fsin‘ xsin x dx= —f(l —c*? de, where ¢ ~ cos x,

=—ctict—1ctt 4,
= —cos x+4£ cos® x—1 cosb x+ A4,

In the case where n is an even positive integer, the integrals can be
evaluated by expressing the integrand in terms of multiple angles either
by elementary means or by use of De Moivre's theorem, but usually
the general method given below, involving a reduction formula, is
preferable.

fsin“xdxzfsin“'lx sin x dx,

={—cos x) sin®"1 x~ |(—cos x)(n—1) sin®~* x cos x dx,
integrating by parts,

= —cos x sin® "1 x+(p— 1} sin® 2 x{1 - sin® x) dx,
=08 X 8Nt x -+ (n— 1)fsinﬂ‘=xdx—(n- 1) ) sin® x g,
n[sin“ xdx=—cosxsin" 1x+ (n—l)fsilft""2 xdx . (i)
Similarly,
n[eosn x dx =sin X cos?~1 x+(n—1)feos--! xdx . (i)
Negative integral powers of sine and cosine are best integrated by

expressing them in terms of cosecant and secant respectively.

Ex. 9. Integrate sin* x and evaluate / h::os‘ x dx.
Using result (i) above, '
4 [sin® x'dxe = - ¢os x sin® x + 3 {sin® x dx.
fsin‘ x dx=%{-cos x sin® x + {(x -} sin 2x)} + ¢,
From result (ii) it follows that

]hcos"xdx-——-n;l cos™ ¥ x dx.
) R Ja



POWERS AND PRODUCTS OF SINES AND COSINES 239

b= 4 =
] cos‘xdx=%f Dos‘xdx=§--%f cos? x dx,
0 0 0

w

L
7 3 cosgxdx=%-%--i[i—x+%sin2x:| ,
o

4

(|
Wl o
ohe oy
o——
-

- IO R PRS- I I
P A R ¥ T 4

The integral f sin®? x cos? x dx, p and ¢ integral.
If at least one of the indices p, q is odd, the integral is easily obtained.

E.g. fsin“xcos’xdx= sin® x cos® x cos x dx,

= f $%(1 — s%)ds, where s=sin x,
=1sin" x—} sin® x +c.

A second simple case arises when p-+q is a negative even integer,
immediate integration being effected in terms of tan x or cot x.

2 2

cos% x cos? x ] 1

E.g. h dx=| = .= . dx,
& sm® x sin? x sin'x sindx '

= f cot*® x cosec® x cosec? x dx,
=~ [exa+endc, where C=cot x,
=—1cot* x—}cotd x+ 4.

In other cases the integral is evaluated by obtaining a reduction
formula connecting it with either of the integrals [ sin? ~% x cos? x dx
or f sin® x cose~? x dx. |
[ sin? x cos? x dx

=f(cosf x sin x) sin®? 1 x dx,

:(_q_-il*_icos“l x) sini’-lx+';%:[cos¢“xsin”"xcosxdx,
= —ﬁ cosﬂ*‘xsinﬂ“x+‘;—:: cos¥ x(1 ~sin® x) sin? ~2 x dx,
= _E_ll__l cost 1 x ginr 1 x+—§%~i sin?~ % x cos¢ x dx

p—

g+l sin? x cos? x dx.

(p+q)jsinﬂxem:r.dx
==—eos'l“xsinl’“x+(p-—l)fsinl'"xoos‘lxdx. . (iiD)
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Similarly,
(p—i—q)[sin" x cosd x dx
—sinP*ix cosT ! Xx+(q—1)/sinPx cost " 2xdx. . . (iv}
sind x
Ex. 10. lnregmn co? X
Using the reduction formula {iii) with p =4, g = - 2.
i 3y 2y
2[smzxdx o sm I_3[sm v,
cos? x Cos X cos? x
3
- - 5_.1_1_1____ +3 ] tan? x dx,
cos X
- -S'L?‘-Tsf(qea - 1) dx.
cos
ind 5y
o f$!-r~12 l{ sin® *y3tanx- 3x}
cos " cos x

Powers of tangent and cotangent. Any integral power of tangent or
cotangent can be readily integrated.

We have ftan" X dx=[lanﬂ‘ ty(sectx— Ddx, fornz=2

Le. ftan" x d"“ﬁ"i tan™ ! K—ftanﬂ—?- x dx.

|

Hence f tan® x dx can be reduced in terms of one or other of the
integrals ftan2 x dx, jtan xdx,
where ftan’xdx=[(secsxml)dx=lan X-x+e;

ftan X dx-'--'fsﬂ{fdx—- —log cos x or log sec x4+ ¢,
Cosx

Similarly, fcot“ xdx=-— 51—1 cotn 1 x—ftmt“‘= x dx.

Hence [ cot? x dx can be reduced in terms of one or other of the
integrals [ cot? x dx, [ cot x dx,
where fcot’ xdx=f(cosec2x— ) dx= —cot x—x-+¢;

_feosx . _
[cot x dx—f S dx=logsin x +c.
Ex. 11, Integrate: () tan® x; (if) cot x. .
(i) ftansx dx=ftan x(sect x-1)dx =4 tan® x+logcos x +c.

(ii) 1:(‘.hl“m;i’xﬂfmtE x(cosec?x~ D dx=-Lecot®x+cotx+x+e.
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Powers of secant and cosecant. Even powers of secant and cosecant
can be integrated without difficulty.

For fsec‘xdx=tan x+c;
fsec‘xdx=j(l+tan’x)sec“xdx=tan x+4tan® x--¢;
fsec“ xdx=f(l+ ) dr, where t=tan x,

=tan x +% tan? x4 tan® x4+ ¢
Generally, fsec"‘xdx = f{1+t’)"‘1dt, where t=tan x.

Similarly, [ cosec? x dx = — f (1-+¢2" 1 de,, where c,=cot x.

When n is odd, the integrals f sec® x dx, [cosec® x dx are evaluated
by obtaining reduction formulae as follows:
fse«c"l xdx =fsec2 x sech "% x dx, assuming n>2,
=tan x sec® "2 x—(n—2) | tan x sec™ ~? x (sec x tan x)dlx,
=tan x sec* 2 x—(n—2) [sec® ? x tan® x dx,

=tan x sec® 2 x—(n—2) fsec""x(sac*x-—l) dx.

(n—l)fsec“ X dx=tan x sech 2 x-i-(n—2)fsec“"2 xdx.
Similarly,
(n—l)[cosec" X dx = - cot X cosec" 2 x+(n—2)fmsec“"’ x dx.

These results are true for all integral values of 722, but need only
be applied when # is odd.

Ex. 12. Integrate: (i) sec® x; (if) cosec®x.
{i) Using the gencral result above,

2[3&3 xdx=tanxsecx+fsecxdx,

[sm:3 x dx = tan x sec x -+ log (sec x + tan x}] + c.
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(if) From the general result,

4fcosec5xdx= - cot x cosec? x + 3 | cosec® x dx;

and 2f{cosec* xdx= —cotxoosecx+[cosccxdx,
= — ¢ot x cosec x — log (cosec x + cot x).

", fcosecaxdr= ~ 1 cot x cosec® x — § cot x cosec x
- %log(cosec x+outx)+c.

The integral [ —p o and allied forms. The integral [ e
and such allied forms as
dx dx
j&_-ib sin x be tan x
dx A+ Bcos x+Csinx
fmasx+csinx’ fa+bc05x+csinx

are transformed into integrals of rational algebraic functions by wsing

the substitution

_ 2 =2 .2
¢=tan4x whence dx_l-l-—r” COs X=1 ) SN X=77n

Integrals of similar forms but involving one or more of the functions
¢os 2x, sin 2x, tan 2x, cos? x, sin? x, tan® x can be evaluated by using
the substitution z=tan x.

Ex. 13, Evaluate: (1) f cﬁﬁ s where 0 < a < (i) f o

() Using the substitution ¢ =tan {x,

dx _ 2dt —2 dt
[co3a+cosxrfco¢=a:(1+z’)+(1—r’) (1+cos a)— %1 —cos &)

2 dt 1+cosw 3
[S & where a’—— oo & =cot? e,

T1-cosa
1
“’m fza(a— a+r)df where a=cot 1=,
1 cot fa +tan $x
Tsine  © cotde-—tandx
(ii} Using the substitution #=tan 6,

de I e

then dﬂ—— I 9_1+r” sin 6_1—_“‘i

. 40 _ dt ,
'fa’sin’ﬁ+b’cos’0 fa’r*+b’

1 at 1 atan®
= -1 —_ 1
; tan : ; tan ( )+C.




HYPERBOLIC INTEGRALS 243

Hyperbolic integrals. Most of the integrals involving hyperbolic
functions can be evaluated by methods similar to those used fer the
corresponding trigonometric integrals. Some hyperbolic integrals,
however, are best evaluated by replacing the hyperbolic functions by
exponential functions, Both methods are illustrated below.

Ex. 14. Integrate: (i) smh? x; (i) tanht x,

@) [sinh®xdx= f sinh® x sioh x dx,
=f(c’— 1) de, where c=cosh x,
=1 cosh® x - cosh x + A,

(i) f tanh® x dx = {tanh?® x(1 — sech? x) dx,

=ftanh’xdx-§ tanh® x,
=f(1 — soch? ) dx - 4 tanh® x =x - tanh x— } tanh® x+ c.

Ex. 15. Integrate: () sechx: (i) v @<L,

a+bcoshx'

. dx
(I) ]mhxdx '2[@‘;2[8’:—“(!1'
=2 tan"1 (%) +c.
dx
(i) a+bcosh x 2[2a+b(e‘+e') fbe”+2ae’+b

2fbu’+2¢zu+b’ where u=¢7,

e

{ant buta

v’(b’ a%) V(b —a®
2 , b +a

or YE-dH® -t

EXAMPLES 12
Integrate the following functions:

+ec

1. cos® x. 2. sinfxcos*x. 3. sindxcosx. 4. tan®=x.
ind
5. cos*x. 6. sin® x. 2 :-'5'15—; 8. sin 2x cos? x.
9. glr'n"z—xlm' 10. taﬂs X. 11. cﬁta X. 12. sin* x cos? X
13, — - 14. s0c x. 15. sin x sin 2x sin 3x.

cost x
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i Scosx+6
16 tanx(lFseca) 1 g, gooe s 18 S cosxesmasd
cos? x 1 SeC x
Y oedrismr 2 Fcotx axb. W o an
1 1 1
2. Thtamx 23 {asinx+bcos x)* 2. sin x(1 + sin x)}
25, cosh® x. 26. cosh mx cosh nx. 27. sech® x.
28, cosh? x sinh?® x. 29 - e L —— -3 g b
acosh x+ bsinh x
39, X MRS S _sos*2x
T sin(x— e} " sin x +sin 2x sint x cos? x
Evaluate the following integrals:
*'ﬂ' . i‘l’f =
1. [ sind x dx. 4. f cos® x dx. as. [ tan® x dx.
fi”acosx-i-_bsmg:d . tr g8
,  cosx-+ sinx ] 3+5cosx . costé+3sin?0

dor bar 2
3. f — B a0, f -ﬂ._,
n a+ bsinx’

9
41, Evaluate f mdoTs-@)_’ by means of the substitution

taniﬁr\/(%:)tanﬁ.

B
42. Prove that lfv-—-— LN =cosh «.

l-cosﬁtanhoc

1T
43. Evaluate; (l)f (iii)[ 3_"_‘2 Cosxdx
o

" . Gi) f’ xdx
l+ cos x’ o 1+sin x’ (3 +cosx)

Reduction formulae. Reduction formulae, used successively, are an
important means of evaluating a considerable number of different
types of integrals. By far the most common method of establishing
them is by integration by parts and in some simple cases, as in the
following example, the result follows directly.

Ex. 16. Find a reduction formula for f x*gin x dx.

Let Iy =[x" sin x dx.

Clearly, to reduce the power of x, the term x* will have to be differentiated
when integrating by parts.

We have I..=—-x“cosx+nfx““cosxdx,
=X COs X+ 0 {x"‘" sin x—(n— l)fx"‘z sin xdx} .
le. I =x Yp sin x — x o8 X} - m(n- Dy
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In some cases of establishing reduction formulae by the method of
integration by parts the original integral I,, is made to appear on both
sides of the equation. This procedure is demonstrated below.

Ex, 17. Find a reduction formula for f € sin® x dx, a#0.

Clearly, in integrating by parts, the term sin™ x must be differentiated.
i . .
We have Iu=ae"~‘smﬂx—zfe'” sin® "1 x cos x dx.

The process will have to be repeated in order to obtain a term in cos® x
on the R.H.S,, as this can be replaced by 1 - sin? x.

. 1 .
5= I.e““ sin®x -2 [— e sin""! x cos x
a ajla
I . .
~a f et {{n— 1) 510" ¥ x cos® x - sin® x}a’x].
1 . | .
=—e“sm".x—ﬁ|:—e“ sin* "1 x cos x
a ala
1 . .
- -afe‘”’{(n - 1}sin"" %2 x - psin® x}dx]-

o (@ e, = sint T E xfa sin x - ncos x} o+ m(n— 1Mn -,

Ex. 18 IfF, = f x™a? - xMidx, where n>1, prove that
(ot+ D, =021 - DI,
and hence evaluaie I,

To reduce the power of x, the term in x* must be differentiated, but to
facilitate the integration of the term (a®-x%t the integrand is written
1 x(ad- xs)i.

Then rﬁ[— L= ay xn-l]"+-‘- f' (@~ ) — Da"? d,
3 0 30

=0+4(n - l}f‘ (&% - x¥Ka® — x¥x" -3 g,
[\

=‘§'a3(" - I)I”—z - *(ﬂ - l)!ﬂ.
Ie. (n+ 2}, =a¥n - 1M, _,.
Substituting # = 4, 61, =3a%l,.

Substituting 7 =2,  4l~a%l,=a® f (@~ ) dx.
(1]

The integral F {al - x®)} dx is evaluated to La'r by use of the substitution
it

x=asinb,
Hence I =3atl, ~Latl, —+lsax.
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Ex, 19, Connect I'n o= [cOS™ x sin nx dx with Fu-y, n~y- .

Clearly the term cos™ x must be differentiated in integrating by parts.

We have Jpy 5= —}rcosnxcos”’" x—%tfcos nx sin x cos™ "1 x dx,

The term sin (7 - 1)x is introduced on the R.H.S. by noting that
¢OS nix sin x = — sin (ax — x) + sin #x CO5 X,

R AP —-icosnxcos"‘x— %'f{sin nx cos x— sin {n~ 1} cos™~1 x dx.
Le. (m+ Wy, o= —cOs BX COS™ x+ min—g n—1.

Other methods of establishing reduction formulae are indicated in

the worked examples which follow.,
. . . bsin x . .
Ex., 20. Bydifferentiating the function @rbcos establish the reduction

Jormula (n- e -, - (2n—- Naly - +{n~ I —3=0,

dx
where Iy= j:(m_ P
i{ bsinx }_ b cos x (n—DHsin®x
{a

+hcos )"  (a+bcos )L * (@a+6cos 1)
The numerators on the R.H.S. are expressed in terms of (g+ b cos x) as

follows: .
beosx=(atbcosx)-a;

b sin® x =5 - 6% cos? x =b%— {(a+ b cos x)F - 2a(a + b cos x) + 4%).
. od bsmx 1
’ Eﬁ{(a-t-bcosx)"“i} =-@-2 (@+bhcos )1 +
1 1
dh—S)m)ﬁ%ﬂ’-b')(ﬂ- D
Integrating with respect to x between the limits 0 to m,
b
I:(a+b2:):§)" ] = — (- DIy + @20 — D~ (@¥ - B - D),
and the result follows as the L.H.S. is zero.

{@a+bcos

COs nx
Ex. 21, #f Iy= | 5-4cosx ~— dx, prove that 2(I, + fr—3) =5k, when n>1.
cos nx+cos (n-
z(ln'i‘lu_ “‘2[ 5_4cos x
But 2{cos nx+cos (m— 2)x} =4 cos (n— 1x cos x,

= —gos (n— 1)x{(5 -4 cos x) - 5}.
At Dyg) = - [ " 08 (- Dx de+ Sky_,.
[1]

But F cos (7 - 1)x dx = 0, for n>1 and hence the result follows.
(i
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EXAMPLES 12d

1 If I,.=j’e"‘cos"xdx, prove that
(a®+ 10, = cos® ™1 x (a cos x+ n sin x)+ mn— DI —s

and evaluate fh &% cost x dx.
Q
245 #rwx" gitl x dx, prove that Iy =n(dwy "1~ m(n—1)Ih—g.
)1}
3, Prove that nrwcos" x dx=(n- l)Lhm“" x dx and deduce the
i
n
value of L cos™ x dx.

i
41 I..=f tan™ 0 8, prove that 1,.+;,‘_,-;1—1, for n>1.
0
5, By differentiating the function sin?~1 x cos?*1 x, prove the result
(p+q)sin*xcosTxdx = - sin*lxcost*ix+(p- 1)fs'ml’" x cost x dx,
1
6 1f I, —[ (logx)* dx, where » is a positive integer, prove that
]
Iy = — Hfq—4 and deduce that I, =(- 1y"nt.
7. Prove that (m+n)[hsin“‘xcos"xdx-(nvl)rvsin”‘x cos*~ ¥x dx.
9 L]
8 If fou= [ xa™(1 + x9)¥ dx, where m, n are positive integers, prove that
(H‘H- ni 1)[,;,,-1"'_1(1 +x’)h+l—(m_ lum—“‘. .

1
9 If I..-] x"e* dr, prove that I, =%e—i{n~-1},—, and evaluate
) 1}

1
fx‘e"dx.
]
1o.mmatfs‘f‘”xdx=2m("“m+ Sin (=B 4 for 2, and
sin x n-1 sin x
deduecumvalueorfhmf""‘ \
i SIOX

1
11. Find a reduction forinula for f (x;%l)" and evaluate f (—x%l)s
0

1
12.Xf n is a positive integer and I,.nf 21— x}t dx, prove that
(1]
(2’1 + 3}!3 =2”13_1 and evaluate I‘.

13. Prove that 2%*1] cos™ x cos nx dx =T
{1]
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14. Find reduction formulae for the integrals:

G fsinhuxdx; ) [tanh“xdx.

x™ dx
5 If Inn= {loz x)"’ prove that
xn'H‘
(R— ]]Im,n (]og )i! 1+(m+ l)fm’ ot

16. If X =x®+ ax + 4% prove that
2x+a 3ng?
[ Xisy . n-1
fX dx = 2(n+l) TP X dx.

. . xsu+ 1 dx
17. Inve;llsate a reduction formula for (1—_?)«*—-

-
18. Prove that, if I, = f X
’ o (a+btanxy

(A + 20— 2al,_y + Iy s =bf(n- Da-L,

n>1, then

19. Find a reduction formuola for f dx nx>l.

dx
2010 1 =]—x—:p>-q—l, prove that
v b vVt 1)
Qp-q+Dh+2p-29+ Dl =2v2,

1 xtdx
L VG + 1) 45“"‘/2

and hence show that

General theorems on definite integrals. In dealing with the properties
of the definite integral f J(x} dx, where f(x) is assumed to be a finite

continuous function in the range a< x<b, it is important to remember
the alternative results:

f‘ J(x) dx = F(b)~ F(a), where F'(x)=f{(x), or geometrically,
f J(x) dx=the area under the curve y=f(x) for x between g and 5.

Theorem I. f (%) de= f °M) dy.

This result follows from the fact that each integral is equal to
F(b)y— F(a), where F(u) is the indefinite integral of f{w).
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Theorem 11, f 1) dx= — j: (%) dx.

This result also follows st once from the definition in terms of the
indefinite integral.

Theorem III. f ) dx= f ) dxt f "fx) d.
With the previous notation, |
R.H.S. =Flc)— Fa}+ Flb)— Flc)
— F(b)— F(@)=L.H.S.

The result also follows directly from the geometrical definition of a
definite integral.

Th IV, dr= —-x) dx.
eorent [: J(x) [ fla—x) dx
Let x=a—y, then dx=—dy.
fftx) dx~= “f]ﬂa—y) dy,
n "

= f fla—y)dy by theorem II,
O

=f"ﬂa—x)dx by theorem I.
0

This result has important applications in the evaluation of
trigonometrical integrals of the forms
2
Fx ¢{sin x) dx or [ x P{cos x) dx,
0 o
where ¢(x) is an integrable function, as is illustrated in the following
example,

Ex. 22. Evaluate xsmf
o 1+costx
By theorem IV,
f” X sl x { - x) 51 (- x)
Lt - Tk,
, 1+cos®x ;  1+cost(m-%)

{mr—x)sin x

1+cos?x dx.

0
. x 8in x ' sinx
..2f1+m,xdx "[l+cos’xdx’

o [ - tan™? (cos x)]:=1r2 tan™1 1.

T xsinx
, 1+costx

dx=3rS,
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Theorem V. If f(x)=f2a—x), then f A0 d=2 [’ X dx.
For fﬂx}dx=£ﬂx}dx+fﬂx)dx.
Putting x=2a—y in the integral [a Jix) dx, we get
1) dx=— [ f2a—y) dy=["f2a-3)dy,
[ 1@ fﬂ » dy=[ foa-y) dy
- f’ 10} dy as f2a—3) =f0),
EJ:f(x)dx.
o (PR de=2 :
[o ) dx=2[ f d

Ex. 23. Prove that f” $sin x) dx = f "Blsin x) dx.
1] i}

Putting 2a=r and noting that sin x =sin (- x), the result follows from
theorem V.

Theorem V1. If f(x)=¢(x) in the range a<<x<b, then
[0 a5 s .

As the ordinates of the curve y=f{x} are greater than or equal to the
corresponding ordinates of the curve y=¢(x) throughout the range
asox<.b, it follows that the area under the former curve is greater than
or equal to the arca under the latter; hence the required result.

. 1 dx
Ex. 24. Prove that }{fom<%ﬂ.
In the range 0<x< 1,
1 |
_.._g E 1 ’
VAS VA= LS VA
the equalities being true only at the end points x=0, 1.

f;*“"‘f:m e ‘fvgx—f)

. 1 dx
ie. -}{fu Va2 <dm.
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The logarithmic fumction. The logarithmic function log, x can be
defined by the relationship,

log. x—-—fx% for x>>0.
1

It is instructive to develop the simple properties of the function from
this definition.
L[
Lt t

x

i v dt
(i) logxy=logx+logy. For log xy=f -
t

In the latter integral using the substitution ¢=xu; dt=xdu,

F’_c_ig ]‘deu f'/du a‘r

Hence 108x3’=f ;E'*‘fvt—*—*logx%rlogy.
1 1
(i) Jogx/y=logx—log y. This result follows either as a corollary
I
of (i) by writing logx=Ilog G) y or by expressing | d?‘ as
1

f at fl = and using the substitution #= xfu in the latter integral '

(iii) tog xo=n logx. In the integralf"%'ﬂlatmuﬂ; dt=nun du,
i 3

Pt eV du  (Fde
Then logx“=j; Pl A e —ml u—nlogx.

Ex. 25, [f x>0, prove that i--"i— <log (1 + x)=x.

1+& df
We have log {1+ x) f

Now as x>0, the maximum and minimum values of the integrand ; in the
range integration are 1 and 1/(1 + x) respectively,
1+ =z 1+ dt 142
. f At < f - < dt.
A o S A | h

Remembering that x is constant here, the variable of integration being ¢,

1+ 3 dt T1+x 1+z

] ——~--~1—— dr= L; dit =x.

. I+x lixf 1+x° )i

Hence the required inequalities.
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EXAMPLES 12e

" i
1. Show geometrically that [‘ sin @ df > f sind B J6.
o 0

i
2. Without evaluating the integrals show that: (i) ] l‘i‘ "3 is positive;
1

i) f' (1 - x%? dx is negative.
1

3. Use theorem IV to evaluate: (i) [' xsinxdx; (i) f' x cos? x dx.
0 0

L
4, Show geometrically that: (i) | sin® xdx=2{ sin®xdx;

02# 0 ‘.4
(ii)f sin® x d = [‘sinSxdx.
LI} 0
11 de
5. t oo 1.
Prove thal 72 /01/(1+-t"‘)‘<

6. Without evaluating the integrals prove:
b T
) ] sin xdx=[l cos x dx;
1] ]

T
i) fcos'xdx=-—ﬁos’xdx=0.
0 )

L]
7. I f{x}<0in the range a< x< &, show that f {f(x)}" dx is negative oc
positive according as z is odd or even. =
e g
8. Evalvate: (i) | xsin® x dx; (i) f x cos? x dx.
o a
9. If m< f(x)< M in the range a<x<b, prove that

mib- a)éff(x} dx< M{b-a).

10. Use the result of the previous question to establish the following results:
2 1
@ 0< | xtan xdx<den; (@) if #0, }-:f ——ff—-‘:l
t o X®+ 1
11. Without evaluating the integrals prove that:

- o
) f sinﬂxdx=2f sio® x dx;
1 [1]

Gi) if n is a positive integer, | sin®x dx> f" sin™* 1 x dx.
(] 0
L
12. Prove that tan" 0 d8=0 if m is an odd integer.

~}n

13. Evaluate the integrals: (i) xecos®xde; (i) | xsin®2xdx.
4]

I
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14, Prove geometrically that j ’ xe " dx=0,
dx 2 dx

15. tfI=) — - .
Show tha R td | xganddeducethatf>q'"z

16. Prove: () f " xblsin x) dx =4re [ d(sin x) d;
1] 1

(i) f xd(cos? x) dx =3 f’ d(cos® x) dx.
0 n

17. Evaluate

_FSAX dx and show that f- KOS X dx =0,

2 +cost x 1 +sin® x
i} n

" };fr
18. Prove: (1) O<F tan"“xdx{[ tan®* xdx, it m is a positive
H

o

1
integer; (i) 1< [ e dx <1,
4]
. pr
19. Show that fh log sin x dx = j log cos x dx and deduce the results:
1] 1l
NN L. b
(i) 2[ logsmxdxzf log sin 2x dx —in log 2;
r;r ""” in
(ii) logsin2x dx=} [ log sin x dx = f log sin x dx;
T 1]
~ b }” n
(iii) f log sin x dx = -4 log 2.
0
xM-1 1
20, If B>0, prove that logx-c:——ﬁ——, x>=0. [Hint: n <;-1--_—3 when 7> 1.)

Infinite integrals. Some consideration will now be given to definite
integrals which involve infinity. The two cases which will be dealt
with in an elementary manner are:

(i) definite integrals in which the range is infinite;

(i) definite integrals in which the integrand becomes infinite at some

point within the range of integration.

Infinite range of integration. The integral ro infinity f f(x)dx is
defined by the relationship ¢

f’ fix) dx= tim [ ) dx,

where N is a large positive number.

Tt is implicit in this definition that the limit exists, and we are interested
here only in the cases where the limit is finite and the corresponding
integrals are convergent. In other cases the limit will be infinite and
the corresponding integrals divergent, and in others no limit will exist.
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Similarly, f' feyde= lim | f(x) dx.
- Hywi_pyg
To illustrate the evaluation of an infinite integral take the integral
f noe"’ dx.
1}

N N
We have f e x dx=[—e‘* =]~eN,

0 -'o
and lim e ¥= lim L ={),

Naw N-+w1+N+iN’ - e
N
[e-zdx= lim | e*dx=1.

N-=»>m/y
Ex. 26, Evaluate: (i) fﬂ %s; i@ fn e*eosxdx; (i) fm xie~"dx,
! o o 0

@ fJ %, =tan~! Q- tan~! { - &), where the inverse tangent is taken
—N

as the principal value,
So tan™ 0=0; lim tan"2(- N)=-3r.
N—eco

dx__ . X o _ime
_ : fm1+x=_,v]fﬁj:1+x*“° (—im=4m.
(i) Either by parts, or by taking the integrand as the real part of ¢(~1+9,
the indefinite integral of e~* cog x is found to be 4e~*(sin x — cos x).

fﬂe“cosx dx =4~ ¥(sin N - cos N)-4(-1).
0

But  lim e ¥=0, and hence lim ¢ *Gin N-cos N)=0.
N Koo

¥
Fc“‘cosxdx- Hm | eFcosxdx=%-
L]

Naw 1]

(iii) By parts,
N N N
fx‘e“dx=[—e".x’:' +2[ e~ x dx,
0 0 0

=-e¥, N’+2{[- e, x]:+f:e“”dt}r

= - e F(N 4+ 2N)+2-2e7F,
1

As e”=l+N+2—T-N'+;—'-N3+ ... and N is positive it follows that

e“'};—! N3,
. N N2
S lim e NB= lim ;€ lim é-_N‘=0'

Krpw Nz & N—pm
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Similarly, ]m'l Ne¥w0 andalso lim e F=0,
Nt
hence f e % de=lim x‘e" dx=2.
K Jg

Infinite integrand. Suppose the function f{x}~» 0 as x-»¢,

where a<{e<(h, then the definite integral f fix)dx is defined by the
- relationship, a
f oy dx=tim [ °fix) ds+lim [ e,
a a—0 f, B0 Jo g
where «, B are small positive constants, and the limits are assumed to
exist.
In the special case where ¢ is equal to @ or b only one limiting value
is required.
Take, for example, the integral f

infinite at the lower limit.

» where the iotegrand becomes

1
We have [ 3'71_ =2(1 — a¥), « being a small positive constant.

As a0, a0
Ldx tdx
“-- =lim =2,
0 \/x RLO 1/
Ex. 27. Evaluate: (i) ) \/(1 ; (73] FV{xﬂ x]}
(i) In this integral, the mtegrand is infinite at the upper limit x=1.
1-a
Consider [ - x’)’ where « is a small positive constant.
-2 dy PP L SR
A ‘/(l_xs)=|:sm .1:]D =sin1 (1-a)-0,
As a — 0, sin™? (1 - ¢, assumed the principal value -> 4=,

1 dx N 1 dx
- ](, TS m | aoe
(ii) Here the intcgnmd is infinite at both limits.
r -8 N,
chz 0L ViI-G-1mT [so e-n],
=sin™1(1 ~ B)—sin~? (a- 1)
As 80, sin 1 (1 - B)—>3n; as a0, sinH (- 1) -» ~4r,

We have

[ e
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Ex. 28, Evaluate: (7) f Gopi @ f (x+ 1} o
(i) The integrand becomes infinite at the point x=1.

1-a dx dax I-n ]
Here | (-1)* f;(x-m‘[s("‘m]o +[3(.n:—l)i:,1+8
=3(- )} - 3(— D+ 3(1)- 3pt.
As a0, (- o)f = 0 and as B~ 0 so does pt.
- dx -6
; (x-

{ii) This integral involves two infinities, the upper limit is infinite and the
integrand is infinite when x=0,

dx
(x+Dvx
Let +/x=u, then 2‘1’ =du and the limits become 4/x, +/N.
2 du

Integral f v =2tan"! /N -tan ! v/ a).

But ag N —» oo, tan™t V’N—»-}— and a5 o ~» 0, tan™! v/2 = 0,
©  dx

(x+ l)\/x

X
So consider the integral f

EXAMPLES 12f

&0 I
1. Evaluate: (i) f e dr: (i) f & dx.

_dx ® dx
2. Find the values of the integrals f yy i ey e PERY

3. Using integration by parts, or otherwise, evaluate:
O f ercosxdy; (i) F e sin x d.
1} i}
4. If n< -1, prove thai:fm o -—"-1-—
A n+1
5. Using the expansion of ¢5, show that, if & is positive, e¥>>3N? and
L]
deduce that Ne~¥ ~» 0 a3 N-» oo, Evaluate the integral f xe™* dx,
{

-+
6. Prove that f e ¥ ¢o8 3x dx = 1%
G

7. Evalvate: (l)fv,(“ . (')fv(xi 5
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1
8. Find the value of the integral f x4 dx,
-1

o dx oo de
. Evaluate: () f wove @[ v

L S Y .
10. Evaluate: () f: Vax-ay fo v/ (4x - x%)

11, Find the value of the integral f’ et dx,
]

o dx ___dx_._
12, Evaluate: (i) L.x._zﬁz’ (i) [ Vilx~DE-x)}

- i3 o
13. Evaluate: (i) f xes" de; (i) f (3 4+ 3x)e " dx;
1]

(i) F cosh x+ sln_l;x

Pr: —_——— =
14. Prove that f:{(x—a)(b*x)}i )
15, Evaluate the integrat f nm(l +x071 dx, using the substitution x =tan 9,

dx
16. If a>b, find thevalueoff 2 cosh x+ bsinh x

YLI L= f xte-* dx, where n is a positive integer, establish the
1]

reduction formula f, =nf,— and deduce the value of I,.

18. Usc the substitution x =a cos?® 8+ b sin® & to evaluate the integral
xdx
, V{lx—aXb- 2}

19, Provcthat] sech x dx =x.

x+1 x’
20, Evaluate: (i) f ,\/ as G [ v,(l o=

~ (zg<b.

3]
21. Prove that = if O<f<n,
sin 8

j x‘+2xonsﬂ+l
2 If I,= » where # is an integer >1, prove that

2~ Dy =(2n - 3)p—1,
and find the value of 7.

[



’
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MISCELLANEOQOUS EXAMPLES
1. Integrate:

" 1 . g 1 R X
Oy W mny W e ary
2. Show that /*Tr sec? 0 &8 =1flog (/2 + 13+ +/21.
0

o XN e Xt
3. Evaluate: (i) ]; (l—x) dx: (i) [D et
4, Integrate cosh ax cos bx with respect to x.
5. Integrate:

X
® i -2y
6. Evaluate:

Yo - L]
0] j tan® x dx;  (id) fl sin x tan x dx;  (iii) F sin® x dx.
] fi] li]
7. Integrate the functions: () tan™'x; (ii) (sinh™® x)t,

a0 . .
8. Evaluate fx 51300 when. () a=m; (ii) a=2m.

9. Evaluate: (i) f“’ s @ f Jﬁ—3a

10. Integrate: (i) cosech x; (i) &£°7%; (iii) x%e=".
1. If §,= f (log x)* dx, n a positive integer, prove that I, = - nl,..,, and
deduce that [, =({ - 1)"a!
12. Prove that the integrals fx’(l - x)8 dx, les(l - x) dx are equal.
o i

) (x+a)x+&Y;  Gid m-

1
Show further that each integral is equal to 4 [ 21 -2 dx.
1]

13. Use the result ff(x)dx=ff(a—x)dxto evaluate the integrals:
0

. xsmxdx . xdx o (T xdx
0 i b 2+tan® x ( }jo 2+cos X

l+2cos.”i

1
14. Find a reduction fornula for f (1+ x3"*¥ dx and evaluate the integral
]

when g =2,
15. Integrate x¥+/(1 + x% with respect to x.
dx

) dx ] . v o dx
16. Prove: (i) [72+msx'3¢3’ (“)[: S5+4cosx+3sinx :

17. Use the substitution tan 8 =% to evaluate the integral fh +/tan 8 40,
(1]
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1
. B © 5005 O [ aonve
19. If »n is a positive integer and I, —[lx“(l -x)tdx, prove that
3]
(2n+ Ny =2nl, _; and evaluate iy,
cos’xdx ™

® cost x + b3 sint x a(a+b)

20. Prove that f'

1. Defining lo:pg,x-]¢ - prove geometrically that log, xx- 1.
1

22, Prove that
cos"xoosnx
m-+n

foos"‘xsinnxdx-— foos""xsm(n-— x dx
m+u

and deduce that r'oos‘xsinﬁxdxu}-

23, Evaluate the integrals: (i) f m (i) f V(- xz)'

w B © [ ot @ [

25, H f(x)=f{a - x), prove that 2] xf(x) dx=a| f(x)dx, and hence prove
1] i}

X 8in x c0s x
S

26. Evaluate the integrals: () f(lu’)tan-lxdx; (i) f’ xtanx
0

s 1+ dx.

27. If 0<<a<:b, prove that

f dx - .
, xv{(x-a}b-x)} +/(ab)

. de . hﬂ_—dx_—
28, Evaluate: (i) [m. (ll)fo _(2—cosx)(3—oosx)'

29. If 0<<k <1, integrate with respect to 1.

30, If!.-[:x"e"'dx, nz2, prove that 27, =(n— I,—y and deduce
the value of I,
31. Evaluate the integrals: (I)IJ dx; (D) :ﬁ;i')dx

32. Prove that + D<a<x and evaluate

],,wx‘+2xcosu+l-si~f{;
&
b x4+ 2% cos a+1
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3.1 L= r tan™ 0 g9, prove that J+ fy—s ="—1-l~ for nintegral and >1,
i -

1 1
Show further that S+t <I,, < on )

34, Prove that f‘cmxlog(cosx)dxslogZ—l.

i

35. If b=a>>0, show that

sin & 49 nz_
i@t + 5 -2abcos®) b

dx
36. Evaluate E: m(/flﬂfx;)

x® dx
V{2 +2ax+b)

rly+ (n+ Daly -y + (- Dby -3 =x" "1 /(x3+ 2ax + b).
38, Use the result f ) dx = f' fla- x) dx to evaluate the integrals:
L1} 0

KA (A » n22 0, prove the result

T xgin® x

§
@ f 1og {14+ tan 0 tan x) dx, 0<O<dr;  Gii) f

1+cos?x
i : x $in x dx ,
39. Evaluate: (i) f (x—aVib — 9 dx; (i) f" Ay <L
40. Prove that "’E’ - ) dx ~3n{+/21) and deduce the result
0

yn(v2-1) <[ }/T%x- dx<ir,
41. Find & reduction formula for J, = flm xﬁi_;?(é:??ﬁ and evaluate the
integral when #=1, n=2,
42, Prove that f' S de=1 f {fix) + fla- x)} dx and evaluate the integral
4] Q

t dx
fo (- x+ e 141)



CHAPTER XTIl
FURTHER PROPERTIES OF PLANE CURVES

Plane curves expressed im polar coordinates. Let P(r, 6) and
O(r-+ 3r, 6+ 30) be neighbouring points on the curve r=£(8) (Fig. 78).

Take A as a fixed point on the curve and let the arc lengths AP, P
be s, 35 respectively,

If PR is perpendicular to OQ, then r=f(8)

RQ=38r; RP=rs08; chord PO =35,
By Pythagoras, (85)®==(r30)?4(3r)%.

(8= (8

In the limit as @ - P,

()-8

Let angle OQP=¢,

80 . 36 3r
then tan qﬁnrs'-_, sin a;‘b_rg, cos:g&-sws

In the limit as @ -» P, ¢ becomes the angle between the radius
vector and tangent at P and we have the results:

0, . df _dr
hn¢p=rd—r, BIB Q=¥ 0§ COSP=g.

Sign convention. ¢ is measured positive in the counterclockwise

direction from 6} to the direction of the tangent for increasing values
of 8 (Fig. 79). '
When tan ¢ is negative, ¢ will be a
positive obtuse angle.
If ¢ is the angle from the initial line OX
to the tangent at P,
a0

$=0+¢@=0+tan2r i
Perpendicular from origin to tangentf.

In Fig. 79 if p is the length of the
perpendicular from @ to the tangent at P,

p=rsin ¢.
261
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To express p in terms of r, we write

1 I /dr\?
Le. p,=lﬁ+?(d—s) - (i)
This result is often expressed in the form,
1 day? 1
?=u‘+(d—g) » Wwhere u=_:

By eliminating 6 between the equation (i) and the equation of the
curve r=j{8), an equation connecting p and r is obtained. This is
known as the pedal equation and is useful in dealing with curvature.

The locus of the foot of the perpendicular from O 10 a tapgent is
called the pedaf curve.

Ex. 1. For the curve 2{-—1 —cos 9, prove that:

@ $=m-48; () pacosectd; (i) p=ar.
® =

—=1-coab.
r

Differentiating with respect to 0,

2adr .
"?’ﬁ=5mﬁ'.
dd 22 1-c088
dr rsind sin @

Le. tan ¢ = — tan 40 =tan (n—40),
¢=n—40,
(&) p=rsin $=rsin 49,
J2asinid_ g
1-cos @ sin 48
Le. P =a cosec 38
(iiiy We have P =a® cosec® 40,
2a a
but = =
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Ex. 2. Show that the curves r* —=ab sec (40 + o), r¥ =b* sec (45 + P} intersect
at an angle independent of the constants a, b.

To find the angle of intersection we require the difference between the
values of ¢ at a common point.

For the curve i =g sec (48+ ),
taking logarithms and differentiating with respect to 6,
1dr
4; "i—ﬁ =4 tan (4B'+ d).
Le. cotd =tan (48+a); im-p=db+a.

Similarly, if ¢’ refers to the second curve, 4m—¢'=46+p.

-, The angle between the tangents to the curves at a point of intersection
=i =B

Arc length and area of surface of revolution. Integrating the result

ds\2 dar\?
(&)-(8)

wetwe =1 [fos(5))

where s is the arc length AR and «, B are
the vectorial angles of A, B respectively
(Fig. §0). ¢
sis taken as positive in the direction Fic. 30.
determined by 9 increasing.
Area of surface swept out by the element of arc 35 in one revolution
about the initial line OX = 2nyds.

.. Area of surface of revolution of arc AB

=2r f:r sin® J {r’+ (gg)r} a6,

¥x. 3. Show that the polar eguation of a circle radius a with pole on the
circumference and a diameter as initial line is y=2a cos 9. Deduce that the
circumference of the circle is 2xa and by rotaring the circle about the nitial
line, establish that the surface area of @ sphere, radius a, is 4na®,

Let P(r, 8) be any point on the circle centre C, radius a.
Then OP=0A4cos b,

i.e. r=2acos 8.
For the complete circle, & varies from 0 to =,

<. Circumference = [ J {,2 + (j_'; )’} db,

- f 2a+/(c0s? 9 +sin? 8) d9,
0

!

o [ A X

~2a f" 48 = 2ar.
(1} Fic. 81,
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If the semicircle r —2a cos 8, 8=0 to }x, is rotated about G.X,

. tid dr
area of surface of revohition =2 j rsin B ,\/ { 2., (dﬂ) }dﬁ
()
m
=4a’r:f sin 20 d0 =4na®,
0

I.e. Surface area of sphere =4mg?,

EXAMPLES 13a

Find ¢ and p in terms of r, 0 for each of the following curves:

L r=acost, 2. r=asinf.

3, rsinb=a. 4, p—pdoota

5. r=a(l -cos 8). 6. rsin?i0=a.

7. r?=a?sin 20, 8. r(i +2 cos 6) =4.

9. Find the points of intersection of the curves r=sin 9, r=1-sin 0 and
the angles at which they mtersect

10. For the curve B=(—1-1/ {r* - a® - cos™? ‘:; prove that cos ¢ &f.

1. Prove that the pedal equation of the curve r? =g® cos 28 is r® =4%p.

12. Find a point on the curve r#=4 cos 20 at which the angle between the
radius vecter and the tangent is .

13. For the cardioid r =a(l + cos B), prove the following results:

(@) p=in+10; Giy =T+ 20,
(iii) p=2a cos® i8; (iv) 2ap®=1ro.

14, Find the angle at which the line 6 =4r meets the curve r=a{l + cos §)
at the point of intersection other than the origin,

18, Provethat the curves r® cos § —q?, r¥sin® = - 5 intersect orthogonally.

16. Prove that the pedal equation of the ellipse x%a®+p%6% =1 is
ab? =p¥at+ b® - +%), when the origin is the centre of the curve.

17. Taking the focus as pole and the axis as initial line, establish the polar
equation of a parabola in the form 7(1 - cos ) =2q. Deduce the pedal
equation p* =ar.

18. Find the coordinates of the foot of the perpendicular from the origin
to the tangent at the point (4, =) on the curve r =2(I + 2 cos 0).

19. With the usual notation, show that the coordinates (¢, 6) of P’ the
foot of the perpendicular from @ to the tangent at P on the curve f(r, 8)=0
are given by »’ =rsing; & =0+,

20. With the notation of the previous example, find the polar equation of
the Iocus of P* in the following cases:

() r=acosb; (i) r?=0?cos 20; (i) r(1 —cos 8)=2g.

21, Find the locus of the foot of the perpendicular from the centre to a

tangent for the hyperbola x¥/a® - y3/pt =1,
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22, Prove that the curve r=ae®*®, where a, = are coastants, has the
property that it cuts all radii vectors at a constant angle. Show also that
the pedal curve has a similar property.

23. Find the arc length of the curve r =2a cos (8 - n) between 6 =%x and
LR

24. For the curve r =a(l + cos 8), prove that j‘; =2g cos 48 and deduce the
perimeter of the curve.

28, Find the arc length of the curve r =ge™ between 8 =« and 8 =B,

26. Show that in the curve f=a, pE2=r"t+a 2%

27. Find the total length of the carve r=a(l — cos B).

28, Show that the tangents at the ends of a chord of the cardioid
r=a(l + cos 8, which passes thtough the pole, are at right angles.

20, For the curve r cos® § =a sin?8, prove that

::T}ﬁa tan 8 sec? 6(4 + 9 tan® )Y,

Use the substitution tan® 6 = to obtain 5 in terms of § and show that the arc
length between 6 =0 and B —tan™1 /5 is 43a.

30, Show that the area of the surface obtained by revolving the curve
r=a(! + cos ) about the line & =0 is 34",

31. The arcof the curve 11 + cos 8) =2z between 8 = 0 and 6 = 4= is rotated
about the initial line, show that the area of the curved surface generated is

Sra*(/8 - 1).

Polar form of radius of curvature. We have y=9+4,

dp _dd df
50 s =dtas
dv_ fdr
But tan ¢= i a
( (dr)’__rd’r
) dp_d [ [dr\ do_de|\ds det
L sedtd o= dﬂ( ds)

ds ~ds ‘-[ _@";T_

r ) db_de ({;’;)~§-§;
{l+(?;y}73=3é —— as sec® $=1+ tan? ¢,

H
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dr)"_rdgr
df_db (HG do?
So ds ds 2 '
d’ﬁ +¥
dar\?  d%
r=+z( ) -
and hence ifz < dﬁd Taw
r r
@) s ()

273
e (9
Le. Radius of curvat a6
L. i urvature p= dq’ 2+2( )_rﬁr‘
4o de?
Ex. 4. Find the radins of curvature of the equiangular spiral r =ae?tote
at the point (r, 8).

dr dazr
? el fodta . = 2
We have P cotae reot o i cot® «.

{r’-{-( ) } ={r¥(1 + cot? a)}3 =r? cosec? «;

2
and r’+2(::;) de; r}{1 + 2 cot? «— cot® «) = r% cosec? o,
_rPcosec® «
—WEFCOWQ.

Radins of curvature—pedal form. Let P(r, 9) and Q(r +3r, 8+ 89) be
neighbouring points on the curve f{r, )=0 (Fig. 82).

Let OR, OS the perpendiculars from
the origin on to the tangents at 7 and Q0
be of lengths p and p + 3p respectively.

If the tangents at P and & make
angles ¢, ¢ + 8} with the initial line OX,
it follows that

LTUS =8,

We have
TS=0S—0OR=38p; UT=PR=rcosd¢;
so from triangle TUS,

IS__ % P 3
W= Ur reosd
ie. -g{‘[—;jﬁr COs .
In the limit as Q ~» P, this result becomes

f(r,l?) =Q

Fis, 32,

'N‘ =1 o8 P =PR,
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ds _ds dp dv dr

Hence, F:Cﬂ;’_dp dl,ZI_di'.Hp -?'COSqS.
ds 1
But s d
—
e P-—l‘dp

Ex. 5. For the curve v2cos 20 =a3, prove that p=r*/a® numerically.

It will be simptler to obtain the pedal equation of the curve and then use
the pedal form for the radius of curvature.

We have 2 =g% sec 20,
dr
2r P =2a® sec 26 tan 26.
2
Le. tan ¢ = e 30 tan 26~ 26;
$=1=-128,
. p=rsing=rcos 29=a—:'
; dr _ a% r3
Radius of curvature, Rl A S |
Le. rs numerically.
a
Ex. 6. Prove that p p+d¢.’-
Referring to Fig. 82, OP=0R¥| PRE;
. dp
ma
ie. r + ( i ‘l”)
. _— dp s
Differentiating w.r.t. p, -w--- =2p+ ( ) .o
® ? Zp d‘¢ dsb dp
dr eyt dip d’p.
P g P T A

EXAMPLES 13b

Find the radius of curvature of cach of the following curves at the puint
stated:

L r=20; 0=1x, 2. r=acos U; 8=1r,

3. r=asin28; 6=4%r, 4. r=a{l - cosB); B=m,

5. r=a(Z+cos0); 6=4n. 6, r=ae® 6=0.

7. p=ar®;, r=2. 8 pri=a r=1.

9. ri=pla-p); p=0. 10, &2 =(h2+ a® - ri)p?, rea.

1L rP=g%sin 20; r=a. 12. r¥cos O=a®; r=a/2.
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13. By first obtaining the pedal equation or olherwise, prove that for the
cardioid r =a(l +cos 0), ¢ =%a cos 6.

14, Find the pedal equation of the parabola 2a=r(1+cos %) and deduce
the result, atp =2r1.

15. For the curve + —a sec 29, prove that ¢ =#4/3p® numerically.

16. Show that the radius of curvature of the
curve r =a sin 79 at the origin is ina.

17. For the curve r*=a®cos2d, prove that
3rp =a

18. In Fig. 83, C is the centre of curvature of
the point P; the radius vector OP meets the circle
of curvature again in Q. PO is called the chord
of curvature through the pole. Prove the resulis

PO=2 siné-——zp%;-

19, Show that the length of the chord of
curvature through the pole of the curve Fic. 83,
rt—a? cos 20 is 4r.

20, For the equiangular spical r —ge?t*2, prove that the centre of curvature
is at the point where the perpendicular to the radius vector through the pole
meets the normal.

21. For any curve, prove the result p= ) and deduce the

_Tr
sin ¢(1 + 3%
ordinary formula for p in termis of » and 6.

22. Prove that in an ellipse, centre C, semi-axes 4, 5, the radius of curvature

at any point P is given by p =%?, where p is the perpendicular from € on

the tangent at P.

23, Show that the pedal equation of a curve for which p =p is of the form
¥2=p?+ g%, where a is a constant,

24. For a given curve which passes through the pole, 3rp=:a?; find the
pedal equation of the corve and verify that its polar equation is r* =4® sin 20,

Area of a closed curve. Suppose the curve is given in parametric
Cartesian coordinates  x=£(f); y=g(?).

Referring to Fig. 84, imagine the curve to
be described in a counterclockwise direction N
starting and finishing at A.

Let the value of # vary from 4, to T, where,
as A corresponds to the two parameters f,, Ty,

ft)=f(Ty) and glr)=g(T)
To illustrate this point take the ellipse

x=1+4cost, y=3sin¢; the curve is com- " “F/h X
pletely described when ¢ varies from O to 2=, -
the point 4 corresponding to 1=0 and =2, FiG. 84.
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H *
Now the sectorial area QPO =14 [ 12 do, where =, § are the vectorial

angles of P and Q respectively.

_ dx_dr 48 ,
Butas x=rcos6, = pcosf—rsin®p . . . . . {i)
_ . dy_dr do iy
Also as y=r sin 8, = sin 8+ 7 cos Bdt (i}

Muitiplying (i) by y or rsin 8, (ii) by x ar rcos 0 and subtracting
(i) from (i),

dy _dx_ ,d . do
XgETyg=ra (cos o +sin® 6} = Jr"dr
. <D dx . 40 2
e, f( E df )df d df f" d8.

. Sectorial area OPQ = J_,f( a_ %) dr,

where ,, #, are the parameters of P, (. ¥
Hence the area of the closed curve

- dy
ﬁﬂ ( dt ya’r)dr y 7

In a case where O lies outside the closed r
curve as in Fig. 85, suppose that in travelling
completely around the curve from A4 to A4
in a counterclockwise direction, ¢ varies from FiG. 85.

t, to T, and let the parameters of L, M, where
OL, OM are the bounding radii vectores, be /, m.

Then, remembering that areas measured in the direction of 6
increasing, that is countecclockwise, are positive and those measured
in the opposite direction are negative, it follows that

«}f( dr—-yar)df~~areaOLA

5»]“ ( & )dr* + area OLBM:;

To
and -}f (xj'r ydl)dm—area OAM,

Hence

r
}f “(x g':_y ‘;—’:) dt=—area OLA-+area OLBM —area OAM
t

= area of the closed curve,
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So in all cases, the area of a closed curve x = (), y=g(f)

Tof dy dx)
=1 =
ZL (xdt Yt dt,

the limits being such that the integral is taken round the curve in a
counterclockwise direction.

Ex. 7. Find the area of the ellipse x=acos¢, y=hsint.
The curve is traced out by the point r when ¢ varies from 0 to 2.

. Area a}j (x—-y‘;)drm}abf (cos® £+ sin® ndr,

=iabf'"dr =rmab,
0

Ex. 8. By putting y~1Ix, obtain the parametric equations of the curve
X349 =3axy and find the area of the loop of the curve described when ! varies
Srom Q0 to x.

Substituting ¥=1x, x+ &% =3arx®
, _ 3at | _ 3ar2_ Y|
Le. T YT e

A sketch of the curve is given in Fig, 86; the
origin O corresponds to =0 and 7 = 00, and the

loop is given by values of ¢ between 0 and co. o 2
¥ dx M
Area of loop =§f (x -y ) dt. |
A dt
N dx 3a(l - 2r%) dy _3ar(2- 13)_ FiG, 86,
N ETUIeE @ (PR
e dx_ 9af
TV de TQY AW
dy  dx s ci:': _ s
and [(xaF—ydT)dt—-Ena [u" where =1+,
_. 3
O 1+A
. Yo ody  dx
Hence, area of loop =Nl_1_1:1m{; A (x it dr) dr,

=3a®- 3a? ilm . —

Fawl+ m
=%t
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Theorems of Pappus

I, If a plane area revoives about an axis in its plane not intersecting
it, the volume of revolution is equal to the area multiplied by the length
of the path of its centre of gravity.

Let the arez A be rotated about the axis OX and Jet the ordinate of G,
the centre of gravity of the area, be 7.

Imagine A to be divided into a large
number of very small elements of area of
which the element 8.4 at P is typical.

54
Th — lim 2224,
en 54 -r.[-lo >34
ie. Ay = f ¥ dA, . %
where the integration extends to the whole Fic. 7.
area.

But the volume swept out by §4 in one revolution = 2xy 84,

. Volume of revolution =2r f ydA=2rj 4,
=Arca x length of path of G.

II. If an arc of a plane curve revolves about an axis in its plane not
intersecting it, the area of the surface of revolution is equal to the length
of the arc multiplied by the length of the path of the centre of gravity
of the are.

Let the arc, length 5, be rotated about the axis OX and let the
ordinate of G, the centre of gravity of the
arc, be 7. Y

Imagine the arc to be split up into a large P.8s
number of very small elements of length of /ﬁ\

which 35 at P is typical, |

|
< ly
8 o
Then y= z}'_&;s ‘l I
Ss — U z 5 %
i.e, = f y ds, FG. 88.

where the integration extends to the whole arc.
But the area swept out by s in one revolution = 2=y 8s.
.. Area of surface of revolution=2x{y ds=2ny s,

=Length of arc
x length of path of G.
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Ex. 9. Use the theorems af Pappus to determine the centres of gravity of:
(1) a uniform semicircular area; (i) a semicireular arc.

(i) Imagine a semicircular area, radivs r, to
rotate about its bounding diameter AH, the |
volume swept out being a sphere, radius r. i
We have !

e
4mr® =volume of revolution =4rr? . 2rj, Y r
A &
le. y'=g£. Fic. 89,

. The centre of gravity of the semicircular area lies on the radivg of

symmetry at a distance of -4£ from the centre.

31'1

{(ii} Let a semicircular are, radius r, rotate about the diameter A8, the area
swept out being the curved surface ar¢a of a
sphere, radius r.

i
We have 1
4mr® =area of surface of revolution =rr . 255, le
Le. g, __d__ﬂ - .M_F‘_.__)
T A 8
. . - Fici. 90,
.. The centre of gravity of the semicircular arc

. . , 2r
is on the radivus of symmetry and at a distance of - from the centre.

Ex. 10. A groove of semicivcular section, radius b, is cut vound a cylinder of
radius a, find the voluime removed and the area of surface of the groove,

Volume removed =area of semicircle x length of path of its C.G.,

bt Zn(a— :”-’ )

T

¥ [
=niah® - $=bt. 16 a
Area of groove =length of semicircular —————— A X
arc x length of path
of its C.G., f \
FiG. 91,
=nh. 2 (a— 27{’):

=2n2abh - 4nht.

Volume of revolution of a sectorial area.
Consider the sectorial area OAB to be
divided up inte infinitesimal elements such
as QPO (Fig. 92). '

The centre of gravity of the element
OP( is two-thirds of the way down the
median from @ and in a revolution about ©
O X this point moves a distance 2n(%r sin &),

=X
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Hence the volume swept out by the element == 4,286 . 4xr sin .

8
.. The volume of revolution=%x f r sin B 4@,

o

where «, B are the vectorial angtes of 4 and B,

EXAMPLES 3c

1. Find the area of the ellipse x=1+3cos¢, y=2cost.

2. Prove that the area of the closed curve x=4cosf- 5, y=4sinf+6
is 16m,

3. If Pis the point (a2, 2a#) on the parabola y®=4ax and O is the vertex,
find the area bounded by the curve and the chord OP.

4. The triangle ABC, right-angled at B, is rotated about BC to gencrale
the surface of a right circular cone; BC=<#h, AB=r. Deduce from Pappus’
theorems the formulae for the volame and curved surface area of a circular
cone.

5. If Pis the point {af®, 2at} and PQ a focal chord of the parabola y* =4ax,
prove that the area enclosed between the curve and PQ is

}a’(t’-l»:—s) +a‘=(t+;)-

6. A curtain ring has an external diameter of 6 cru and its cross-section
is a circle of diameter 1 cm; find its volume and surface area.

7. A semicircular bend of iron pipe has a mean radius of 10 cm and an
internal pipe diameter of 5 cm.  If the thickness of the iron is 4 cm, calculate
the external curved surface area and the volume of the metal.

8. Sketch the curve x=a cos? £, y=asind® 1 and prove that its total area
is Firal,

9, Sides BC, €A, AB of triangie ABC are of lengths 5 cm, 4 cm, 3 em
respectively.  The triangle-is rotated about an axis parallel to BC and 4 cm
from it on the side remote from 4. Find the volume and surface area of
the resulting solid.

10. The cross-section of a solid civrcular tyre consists of a rectangle with
sides 6 cm and 4 cm surmounted by a semicircle of diameter 6 cm. T the
external radius of the tyre is 30 cm, find the surface area of the tyre.

11. Show that the curve x = @ sin 2f, ¥ =a sin ¢ consists of two equal loops
and that the area of either is %42

12. By writing y=fx, obtain the parametric equation of the curve
ayt=xHg - x) in the form x=a(l ~ %), y=at(l - 1%) and deduce that the area
of the loop between ¢= — 1 and r=1 is a2

13, The segment of the parabola ¥¢ = 4gx bounded by the double ordinate
x=/Jr is rotated about the y-axis. Find the area of the segment und the
volume of revolution; deduce the distance of the C.G. of the area from the
vertex.
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L] i
14. Prove thal the parametric equations of the curve (E) + (i) =1 can

be expressed in the form x =acos® f, y =b sin®r. Hence find the total area
of the curve.

15, The figure bounded by a quadrant of a circle radius a and the tangents
at its ends revolves about one of these tangents. Prove that the volume of
the solid generated is (£ ~ 3m)na®.

16. Find the volume of the solid formed by the revolution of the curve
r=e{1+ cos 8) about the initial line.

17. Find the atea of the loop (- 1< < 1) of the curve

_1-2 (-2
T YT

x

18. The minor segment of a circle of radius g cut off by a chord of length
2asin « is rotated about the diameter parallel to the chord. Find the
volume of the solid of revolution and deduce the distance of the cenire of
gravity of the segment from the bounding chord.

19. Find the area common to the two ellipses x=acos9, y=bsinl;
x=bcosh, y=asinb, a=h.

20. Prove that the complete area of the curve traced out by the point
(2a cos t+acos 2¢, 2asin ? —asin 2r) is 2ra®

21. Find the volume of the solid formed by the revolution about the initial
line of the loop of the curve +* —a% cos # between 9=0 and B=14x.

22, Show that the area cut off from the curve x® =gy? by the chord joining
the points (es,2, at,®), (at,?, at?) is L5aX{ty~0%12 + I8, + 1,1,

MISCELLANEQUS EXAMPLES
1. Show that in the curve r =a(l - cos 0), the angle between the radius
vecior and the tangent is 38.

2. Show that the curvatures of the curves r =49, ri =g are in the ratio 3: 1
at their common points.

3. Prove that the circunference of the cardioid r=a(l +cos 0) is 8a.
4, Trace the curve r=1 + 2 cos #, showing that it consists of two loops.

el
What area is represented by the integral 4 f r2d8? Find the areas of the
separate loops. o

5. Find the acute angle between the tangents drawn to the curve
2a=r(1 +cos 9) at the points where 6=2r and 8 =4r.

6. Show that in the curve rcosmli=a, )},!ﬁ = l_r—,mx +'—:::-

7. Sketch the curve x =2+ 1, ¥y ~#{r*- 4). Show that it has a loop and
find the area of this loop.
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8. Trace the carve r cos 0 =g sin 30 and prove that the area of a loop is
1a%9/3 - 4m).
9. Prove that the radius of curvature of the curve r=a(l-cos8) is
$a sin 39,

10. Show that the area of the ellipse $%x®+ a2 =a®? Is mab. A ring is
formed by the rotation of the ellipse about the line y =¢, ¢>b; find the
volume of the ring.

11. Prove that the curves r =a{l + cos 8}, r =b(1 ~ cos 0) cut orthogonally.

12. Show that the tangents io the curve r-=a(l-cosf) at the points
6, i=+ 8, #n+ 8, = + 0, from a rectangle.

13. A semicircular groove of diameter 1 cm is cut in a solid right circular
cone of base radius 6 cm and height 8 cm, the groove being mid-way between
the vertex and the base. Find the volume removed and the curved surface
arca of the groove.

14. Find the coordinates of each of the points on the curve r =cos20 — cosd
at which the tangent is at right angles to the radius vector.

15. Find the pedal equation of the curve r?cos 20=a® and deduce that
the numerical value of the radius of curvature is |r*/a?|.

16. Show that the lenpgth of the arc of that part of the cardioid
r=a(l +cos §) which lies on the side of the line 4r cos 6 =34 remote from the
pole is equal to 4a.

17. Find the area included between the two loops of the curve
r=a({2cos 0+ +/3).

18. Trace the curve x=cos 2r, y=sin 3¢ an- find the area of the loop.
19. The equation of a curve is r =g+ Af(h), where @ is small compared

. . FAO) { a }

with b, show that approximately cot d="-2 <1~ —— .
P y ot t=75 1 o®
20. With the usual notation, show that in the curve with pedal eguation
a

pP=r*-a? arc length s=4 % + const.

21. By writing y=ix, obtain the parametric equations of the curve
25+ 3% =Saxty? and determine the area of the loop =0 to ¢ = o0,

22, If the curve r—a+ b cos 8, a>b, rotates about the initial line, show
that the volume generated is $ra(a® + 5%),

23, Starting from the Cartesian equation of an ellipse, deduce that its
pedal equation with respect to a focus as pole is §;= -2;— 1, b<a.

24, Show that the chord of curvature through the pole of the curve
r=ae™?® is of length 2r.

25, Express the equation of the curve (x®+)*)? - 2ax(x*+ M - a2 =10
in polar coordinates, and hence obtain the radius of curvature ai the point
(2a, 0).
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26. Prove that the curves r%cos (28— e)=a?sin 2o, ré=2q%sin (20 2)
cut orthogonally.
27. Find the pedal equation of the curve r™=2a" cos i and prove that
aﬂl
NI ) e
28. Sketch the curve r? =g® sin 0 and find the maximum breadth of a loop.

29, A loop of the curve 2 =2 cos B is rotated about the initial line, prove
that: (i) the volume of revolution is y%ma®; (ii) the C.G. of the volume is
at a distance +£a from the pole.

30. 1f 4 be the area of the cardioid r=e(l +cos®) and V the volurme
generated when the curve revolves about the initial line, prove that 9 = 16aA.

31. Find the area of the curve x=sin?#, y=sind # cos 1.

32, The normal to the curve r® =a® cos 20 at a point P meets the initial line
at . Prove that, if r is the distance of P from the pole, PG =a®rj(a® + 2r%).
33. Show that the curve x={_¢ - 1)¢™/, y=rx has a loop and prove that its
area is e %

4. P, P’ are neighbouring points on a plane curve and PO, P'Q are drawn
perpendicular to OP, OFP’ respectively. Show that as P’— P, angle
POD — x— ¢, where ¢ is the angle between OP and the tangent at P, and

ar
the length PO - 76

35, If € is the centre of curvature at any point P on the curve
™ =g" cos #0 and if CN is the perpendicular from C to OP, where @ is the
pole, prove that NP: OP=1:(n+ 1).

36. Sketch the curve r =q cos® 46 and show that its total length is 2ra.

37. Sketch the curve x =g sin 217, y =b cos® 1, where a and 5 >0, and show
that its total area is 18ab.

38. Show that if the area lying within the curve r =2a(1 + cos €) and outside
the curve r{l +¢0s 0)=12a, is rotated about the line 6=0, then the volume
generated is 187a%.

39, If Cis the centre of curvature at P for the curve r® =2ap?, prove that
(i} PC=%+/(2ar); (i) OC=4%+/(8ar - 3rh.
40, A chord of a circle of radius » subtends an angle 2« at the centre; the

minor segement cut off by this chord is revolved about the chord throogh an
angle of 2r.  Prove that the volume of the solid formed is

2nr¥(sin « — 4 sin® « — a cos «).
41. Prove that the volume of the wedge-shaped solid cut off from a right

circutar cylinder of unkimited Jength and radius a by a plane through the
centre of the base making an angle « with the base is 4% tan «,



CHAPTER X1V

ALGEBRAIC GEOMETRY
OF THE PLANE AND STRAIGHT LINE

Rectangular Cartesian coordinates, Let X'0X, Y'OY be two
perpendicular straight lines intersecting in O and let Z'OZ be a third
straight line through O, perpendicular to

the plane containing X'OX, Y'0 ¥ (Fig. 93). &

For ease of interpretation this latter plane x!

can be thought of as horizontal in which 7o

event, Z'0Z would be a vertical line. ,,, o/ Ve,
The mutually perpendicular lines X’OX;, 4

Y'0Y, Z’0Z determine three mutually A 4

perpendicular planes YOZ, ZOX, XOY, ¥

the coordinate planes. X le . 93

Taking € as origin and the convention
that displacements in the directions OX, O ¥, 82 are positive and those
in directions OX’, QY’, OZ' negative, scales can be taken on each of the
axes X'OX—the x-axis, ¥'0O Y—the y-axis and Z'0OZ--the z-axis.

The perpendicular distances of a point P in space from each of the
coordinate planes YOZ, ZOX, XOY are the x, y and = coordinates
of P; these distances are respectively RS, 08 and PS (Fig. 93).

One set of values of x, y, 2z uniquely determines a point in space.

Notation. The point with x, y and z coordinates equal respectively
to a, b and ¢ is written (g, b, ¢).

Three-dimensional loci. If P is a variable point with coordinates
(x, , z), then the equation of the locus of P is the equation connecting
the variables x, y, 7.

Any equation of the form f(x, y, z) =0 will represent a surface, and
the intersection of two such surfaces f,(x, y, 2)=0, fi(x, y, 2)=0 will
represent & curve, Consequently, in three dimensions a surface, such
as a plane or a sphere, will be represented by one equation while a
curve, and a straight line is included in this class, will be represented
by two equations,

E.g. referring to Fig. 93, as all points of the plane Y(OZ have an
x-coordinate of zero, the equation of YOZ is x=0.

Similarly, the other coordinate planes ZOX, XO ¥ have equations
y=0, z=0.

The axis OX is determined by the planes ZOX, XO¥, and hence it
has the equations: y=0, z=0.

Similarly, the eguations of @ ¥ are z=0, x=0and of OZ, x=0, y=0.
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Fendamental results. Employing the methods used in two-
dimensional coordinate geometry, the following important results are
readily obtained:

() the distance between the points Py(xy, Y1, 21), Po(xa, Yo, Z5) is
VI — X+ (O — YD)+ (2 — 2%

(i} the coordinates of the point dividing the line PPy in the ratio
m:nare

MXgTHX; MYy +nyl, My T N2y
MXp T RX, MY T Rpy MéaT™ R4
m+n mtn m+n
m or n being taken as negative if the division is external;
{iit} the coordinates of the mid-point of PP, are

{‘}(xl-l_xz)s i(YI+y2), ‘}(zl+z2)}‘

Ex. 1. Find the distance between the points (2,0, 1), (- 1,2, - 3.
Distance = /{32 + (- 2)* + 4%} =+/29,

Ex. 2. Find the coordinates of the point P dividing the line joining the points
3,1,0), (“2. 2, 3) in the ratic 2: 1.

. _1{N+2(-2) .
x coordinate = 3ol i
Similarly, y coordinate =§; z coordinate =2.
Le. Pis the point (-4 £ 2).

Ex. 3. Find the coordinates of the points in which the surface 3x -y +2z =6
nicets the coordinate axes.

The surface meets the x-axis, where y=z=0,

Hence 3x=6 x=2.

So the point of intersection with the x-axis is (2, 0, 0).

Similarly, the points of intersection with the y- and z-axes are (0, -6, 0),
{0, 0, 3) respectively.

Ex. 4. Find the coordinates of the point in which the line joining the points
A(0,0, 1), B(1, 0,0) meets the sueface 2x+ y+z+1=0.
The coordinates of any point P on AR can be expressed as

{O_ﬂ) 0+2(0) 1+1(0_)}' . ( A o )

a0 1EA Tt {7 1+ 1+2
in fact, these are the coordinates of the point dividing the line in the ratio .- 1.
The point P lies on the given surface if
pr 1

ﬁ1+0+ i';‘;i'i- 1=0; ie A=- i‘

Hence P is the point (-2, G, 3).
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¥x. 5. Find the eguation of the locus of a point P which moves such that its
distance from the point A(L, 0,1} & twice its distance from the point
B(-1,0, -1).

We have PAS=(x-18+y%+(z- 1)5; PBi={x+1+)*+(z+ )% where
P is the point (x, y, 2).

L= 1P (- D=4+ 1P P DY

ie. 0=3(x2+ y2>+ 5+ 10x + 107+ 6.

This is the equation of the locus of P.

EXAMPLES 14a

1. Write down the coordinates of the six points which lie on the
coordinate axes and are distant one unit from the origin.

2. Show approximately on diagrams the positions of the points: (0, 0, 2);
(0; - l: 0); (3’ 0) 0); (1! l! 0); ("2\) 190); (29{)! l); (01 l! l); (]’19 1);
(_2» 11 - 1)9 (l, _2, 2).

3, Obtain the distance of each of the following points from the origin:
(1,1,0; 2,0, -1); (-2,0, -1); (-2,3,1) (©,4,3); (2,1, 1)

4. Find the distance between each of the following pairs of points:
(2,000, (1,2,3); G) (3,0, =), {1,2,1); (i) (-2, -1,1),©,2, -2}
(i\") (ay —a, 0): (_ a, 0! ﬂ)'

&, Find the coordinates of the point which divides the line joining the
origin to the point (3, 4, — 2) in the ratio 1: 2.

6. Show that the mid-point of the line joining the points {4, -2, 3),
{1, -1,1) coincides with the mid-point of the line joining the points
2, -4,0),3,1,4).

7. Find the coordinates of the points in which the surface x*+ %4 z31=4
mesats the x-axis.

8. What are the equations of the curve in which the surface 2x¥+ )2 - z2 =1
meets the plane z=07?

9, Find the coordinates of the point in which the line j Jommg the points
(1,1, ), (2, 0, 3) meets the surface x+2y—z=1.

10. Find the ratio in which the line joining the points (2,1, - 1), (3,2, 2)
is divided by the plane x =0,

11. What is the equation of the locus of a point which moves such that
its distance from the plane x=0 is twice its distance from the plane z—-07

12. Obtain the equation of the locus of a point which moves equidistant
from the origin and the peint (2, 2, 2).

13. Prove that the coordinates of the centroid of the triangle with vertices
- (3% Y1 20, (6 Yy 20)s (X, Yoo Z) ATE

{Mx + 25+ x), 304 + 32+ ¥, M+ 2+ 290}

14. 4, B, C, D are the points (1, 1, 1), (1, -1, 1), (1,1, - 1), (-1, 1, 1}
Write down the coordinates of the centroids Gy, Gy, Gy, Gy, of triangles
BCD, DCA, ADB, ABC respectively and show that the lines AG,, BG,, CGy,
DG, are concurrent in a point which divides each of them in the ratio 3:1
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15. Write down the coordinates of the mid-point M of the line joining
the points (&, mx, ¢), (B, — mB, — ¢), where ns, ¢ are constants, and prove that
the locus of M is the coordinate plane z-=0.

16. Write down the coordinates of the point P which divides the line joining
the points {, ma, ¢}, (B, - m83, —¢) in the constant ratio ;L. Prove that
the locus of P is a plane paralle] to the plane z=0.

17. Find the equation of the locus of a point which moves such that its
distance from the origim is constant and equal to two. What is the nature
of the locus?

18. Prove that the surface (x-2)°+(y -1+ (z+2)! =5 touches the
X-axis at the point (2, 0, 0).

19. Find the point of intersection of the straight lines 3y-x =1, z=0;
y+2x=5, z=0.

20. Show that the point (1, 1, 1) is the centre of the sphere passing through
the origin and the points (2, 0, §), (0, 2, 0), (0, 0, 2).

Direction of a straight line. The direction of the straight line P_b,.
joining P to @, is determined by the angles the line makes with the
positive directions of the coordinate axes OX, 07, OZ.

If these angles are «, B, v respectively, then
cos e, cos B, cosy are called the direction-

cosines of PE and are usually denoted by the
letters f, m, n, although on occasions these
letters are used to represent three numbers
which are proportional to the direction-cosines.

Taking a line O A of unit length through the

origin and paralle] to Pb (Fig. 94), then the
angles XOA, YOA, Z0 A are respectively equal Fic. 94
to o, B,y. Bydropping perpendicnlars from 4 U
on to the three axes in turn, it follows that the coordinates of 4 are
(cos «, cos 3, cos y) or ({, m, n).

S BrmEnt=04=1;

ie. Bimiint=1.
Hence the sum of the squares of the direction-cosines of any siraight
line is unity, Ne .
Parallel lines. Clearly parallel lines have L4 B4
the same direction-cosines. ij/':/ i
Direction-cosines of fthe straight line % ) "___Jr}_m
joining two given points. Let P,, P, be the - ¥
pOEntS (xh Y1s 21}9 (-\'zv Yo 22)' o, ' ¥

Referring to Fig. 95, in which the
rectangular parailelopiped with edges
parallel to the coordinate axes and with
P P, as a diagonal has been drawn, it FiG. 95.
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——
follows that the direction-cosines of P P, arc the cosines of angles
LPP,, MP,P, NP.P, respectively.
AL PM PN
PPy PP, PPy
Xo % Ya—h ZaToh
r r r

where r=+/{{xg— X+ (¥, — P +(zp— )%

I.e. the direction-cosines are ===

or

Ex. 6. Find the direction-cosines of the straight line joining the points
P2, -1,3), (4,2, 0).
r=length PQ = /22,
> 4-2 2-(-1) 0-3
. Diirection-cosines of PQ are B B B
2 3 -3
V2 v 7 v22

e,

Angle between two straight lines. In the case of lines which do not
intersect, the angle between them is defined as the angle between lines
drawn through any point parallel to them.

Suppose the angle between two lines Q;

P,@,, P+Qy which have direction-cosines
L, nmt, m; kL, my, my respectively is 0
(Fig. 96). 7 3

Let 34, 04, be vnit lines through the ,

origin respectively parallel to P, 3, P,0s. Az

Then angle A,04,=10
and by the cosine rule,
AA2=2-2cos 8.

But as the coordinates of A,, 4, are

(., my, my), (I, my, ny) respectively, x
AyAE =5 — I +{my — m)* + (n, — ng)o
(,— LB+ (my—m)*+(n —m)=2—2cos 8,
2+ 2 ny N+ (L2 + mg® +0g) — 200 /o + mymty +yitg) =2 -2 cos B,

But It+mi+nf=02+mi =1,

B— 1

FiG. 96.

hence cos 0 =11, +m,m, < 0,

As an important special case, it follows that the lines with direction-
eosines I, my, m; Iy, my, ny are perpendicular if hiy -+ mmy+nn, =0,
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Ex. 7. If ABCDA'B'C'Y is a rectangular paralfelopiped with AB=a,
BC =b, A4’ =c, find the cosine of the angle between the diagonals BD', B'D.

Taking edges AB, AD, AA’ as coordinate axes {Fig. 97), then the
coordinates of B, D’ are respectively (a, 0, 0), (0, b, o).

Hence the direction-cosings of BD” arc
..Ta b € .
V@+BE LR @ b)) Vit b cY

Similarly, the direction-cosines of B'D are o lo o

-a b - L
. , , A N P .
Vi@t B+ c®) vig B el Vet e b B
So, if ¢ is the angle between BD’ and B'D, 4

al+ bt - P B ¢
cos 0 =fl, 4+ paymy + 1y, — P Fic. 97.

Direction ratios. If 7, m, n are the direction-cosines of a straight line,
then any three numbers p, ¢, r which are in the ratios /: m: » are called
direction ratios,

As --{:T=r—’=k, say,
P g r
then {=kp, m=kqg, n—kr.
1
2 2_ = - ..
But Prmitni=1, hence k im/(p"’+q’+rﬂ)
Le. F=toyg?

P = 9 oa—. r .
VTR T e T e
If 9 is the angle between two lines with direction ratios p,:q,:r;
Pz G Iy, It follows that
PPt T
V; {(+ .+ + gt + 1D}

N.B. The lines with direction ratios py:qy:ry; Pe:fs:ry are

cos 0=

() parallel, if 2=2="2

Q'z T 2,
(ii) perpendi cufar, if prpa+gaga + =0,
Ex. 8. The direction ratios of iwo lines are py:q,:ry paiayiry, find the
direction ratios of a line which is perpendicular to each of the given lines.
Let the direction ratios of the common perpendicular be p:g:r.

Then PP1+agy + rry =0,
PP2tagetrrg=0.
Solving, P __ -9 ___r

4}1" = P Pehy Pz~ P
Te. g r={gwy - ) {rpe - rep): (P19 - Pofi)-
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Ex. 9. Ifaline OP is perpendicuiar to each of two intersecting lines OA, OB,
show that it is perpendicular to any line through O in the plane AOB.

Take O as the origin and let OA, OB be of unit

length (Fig. 98). P
If the direction-cosines of OA, OB are l;, my, 1y,

L, my, n; then the coordinates of 4, B are

(. 1y, 1), (s, 1, 1,) Tespectively.

The coordinates of any point € on the line AB o
can be expressed as
!1+u2, m1+1m2’ ﬂl""‘lﬂg . B
1+ 1+ 1+% =
Hence the direction ratios of OC are FiG. 98,

fy+ Wy mty 4yt oy + N,
If {, m, n are the direction-cosines of OP,
4 +mmy+any =0 and M, + mmg+ nny=0.
o A+ )+ mimy 4+ ) - n(eny + ) =0
and in consequence, QP is perpendicular to OC.

EXAMPLES 14b

1. What are the direction-cosines of the axes OX, OY, OZ?

2. Show that the direction-cosines of the lines in the plane z=0 which
bisect the angles between the x- and y-axcs are 1/4/2, £1/+/2, 0.

3. If }, m, n are the direction-cosines of a line and =172, m=-1/2,
find the possible values of ».

4, Find the direction-cosines of the hine ioining the origin to each of the
following points: (i) (1, 1, 1); (ii) {2, 3, 4); (iiD @, 1, - 1); (v} {a, b, ).

5. Find the cosine of the angle between the lines joining the origin to the
puoints {4, 1, 3), (2, 3, 1).

6. If the direction ratios of a line are 2 : - 5: 1, find its direction-cosines.

7. Find the direction-cosines of the line P_E in cach of the following cases:
@ P01, 0O(3.1,2y (D PR, -1,0, 00,23 (i) PU, -1,1),
Q(_Is l) '_1}; (IV) P{_S!Zl _])! Q(_4s _1) _2); (V) P(a,ﬂ,—a),
O2a, - a, 2a).

8. If the lines with direction ratios 1: 3 -2, 2: — 1 : r are perpendicular,
find the value of r.

9. Show that four lines can be drawn through the origin each equally
inclined to the coordinate axes and find the direction-cosines of these lines.

10. l;"ind the angles of the triangle with vertices (0,1, - 1), {1, 2, 3),
2,3n.

11, A straight rod is held with one end in the corner of a room. 1f it
makes angles of 60° and 45° with the lines of intersection of the floor and the
walls, find the angle it makes with the vertical.

12. Show that the direction ratios of any line drawn in the coordinate plane
z=0 will be of the form /: m: 0 and write down similar results for lines in
each of the other coordinate planes.
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13. A line QP through the origin has direction-cosines f, »m, v, If Q is the
projection of P on the plane z=9, find the direction-cosines of the line 0Q.
Deduce that, if LM is a line in the plane z=0 perpendicular to OP, then LM
is also perpendicular to 0Q.

14. Find the size of angle 4 of the triangle with vertices A(- 1,0, 1),
B(l, 2,03, C(2, - 1, 2) and deduce the area of the triangle.

15. A tetrahedron has vertices A4(0,1,0), 8(0,0,2), C(1,1,0), D(-1,0, - 1).
Find the acute angle between the opposite edges A8, CD.

The plane. Definition, Suppose that P and @ are any two points in
a surface, then the surface is a plane if all points of the straight line
PO lie in it.

The general equation of the first depree. Consider the equation

ax+by+cz+d=0 and let P(x,, »,, z,), Q(xs, s, o) be any two points
in the surface represented by this equation.

Then - axy by ez, +Hd=0,
axy+by,+czatd=0.

Multiplying these equations by —” and —T_é;l respectively and
adding, "
rlx1+mx3 nyl"i"mya . nzl+mZ!
mtn +b m+n | mtn +d=0.

This equation shows that if P and Q are points of the surface so also is
any point of PQ.

Hence the equation ax+ by +cz+d=0, where a, b, ¢, d are constanis,
represents a plane,

Conversely, the general equation of a plane can be taken as

ax+bytez+d=0.

This equation contains three independent constants, and consequently
it follows that, in general, a plane will be uniquely determined by three
conditions.

E.g. a plane is uniquely determined by three non-coflinear points;
a plane is uniquely determined by two intersecting straight lines,

Plane determined by three given points. The equation of any plane
passing through the point (x;, ¥,, z,) can be written

a(x—x))+b(y—y}+clz—z)=0.
This plane also contains the points (xg, ¥a, Z5), (X3, Va, Za} if
alx;— x)+b(y,— 1) ez —z} =0,
alx,— x, ) +b(y— ) e(zy—2) =0,
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Eliminating the ratios a: &: ¢ from the three equations gives
x—x, y—y 2—z|=0, the equation of
Xo—Xy Yo=Y 2% the required plane.
[Xg— X% Ya—F Z3— 4y
Ex. 10. Find the equation of the plane determined by the points (- 1,0, 1),
(2,1, -1}, (1,2, 1).

Required gquation is x+lyz-1,=0,
31 -2
2 2 0
dx+D-dy+Hz-1)-=0,
ie. x-y+z=0

Perpendicular form of the equation of a plane. In Fig, 99, ABC is
a plane and O is the perpendicular drawn
to it from the origin. z

Let the length of ON be p and let its
direction-cosines be f, m, n; then N is the
point (ip, mp, np}.

If P(x, y, z) is any point of the plane, the
direction ratios of NP are

(x~Ip): (y—mp): (z—np)
and as NP is perpendicular to ON,

Kx —ip)+m(y—mp)+n(z—np}~0,
or, Ixtmy-tnz=p(lt+mit+n)=p.

Fig. 99.

Hence the equation of the plane is
Ix+my+nz=p,

where p, the length of the perpendicular from the origin, is usually taken
as positive.

To express the equation ax — by + ¢z +d=0 in the perpendicular form,
Dividing throughout by +/{a® - 5*+¢? in order to make the sum of
the squares of the coefficients of x, v, z unity, the equation can be
written

a b <
v RN s M kL v N N

= S f._, = if d is negative,
aq
o TVE@TRT A @ RT R’ _'\/(a’+b=+ H°
d

) if 4 is positive,

V@
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In both cases, the equation is reduced to the form
Ix+my+nz=p.
N.B. (i) the length of the perpendicular from the origin to the plane
, d . .
ax+by+cz+d=01is + V@ By the sign being chosen

to make the expression positive;

(i) the direction ratios of the normal to the plane from the
origin are a: b:¢;

(iiiy from (i), the equation of any plane parallel 1o
ax+by+ez+d=0is of the form ax+by +ez+x=0;

(iv) if 9 is an angle bétween the planes arx-+ by + ez +d.=0,

s+ bby o0
- 0= 18 T hidy T O .

r=1,2, then cos :I:‘\/{(alg +h¥ o )at+ 0.2+ &)

Ex. 11. Find the equation of the plane parallel to the plane 3x -2y +z2-1=0
and passing through the point (- 1,2, 1). Also find the distance between the
twe planes.

Any plane parallel to the given plane has the equation
3x-2y+z+2=0,
As this plane contains the point (-1, 2, 1),
—3-4+142=0; iamb.

Le. equation of required plane is 3x-2y+ 2+ 6=0,

Length of perpendicular from the origin on to the given plane is \—/11—4 and
i -2 1
VI§ V14 vid
Length of perpendicular from the origin on to the parailel planc is Jid and
2

«,/ 14 V14 14’ V14 14
Hence the perpendiculars from the ongm are in opposite directions and so

the direction-cosines of the perpendicular are ——
the direction-cosines of the perpendicular are -

the distance between the planes = \/14 \/14— vl

The length of the perpendicular from a point to a plane, Take the
equation of the plane as
x+my+nz=p . . . . . . @

and let (x', 3, z’) be the coordinates of the given point P,
The equation of the plane parallel to (i) and passing through P is

Ix+mpt+pz=Ix't+tmy +tnz'=p'say . . . (i)
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Now if ON, ON’ are the perpendiculars from the origin to the planes
(i) and (i) respectively and PL is the perpendicular from 2 to the given
plane (Fig. 100),
then PL=0ON—-ON'=p~-p',

=p—(Ix"+my +nz'’).

Hence the length of the perpendicular from any
point on to the plane Ix+my+nz=p is obtained o
by substituting the coordinates of the point in the Fig. 100.
expression p—(Ix+my +nz).

If the eguation of the plane is ax+by+cz+d=0, then the length of
the perpendicular from the point (x', ', 2’) is

Lo tby e +d
VEETh D’

the sign being chosen to make the perpendicular from the origin
positive.

QOther important results on the plane. Following the methods used
in dealing with the straight line in two-dimensional geometry, the
following results for the plane are readily established:

(i) if ax+by+cz+d=0 is a given plane and (x", ¥, 2') any point,
then the expression ax’+¥&y +cz’ +d is positive for all points
on one side of the plane and negative for all points on the other
side;

(i) the equations of the planes which bisect the angles between the
two planes a,x + by + ez +di =0, ape+bgytepzt+da=0are

axt+by+ azZ+d,  axthyt ez + el
viat+ bt ¢ VigE+b2+f)

(iii) the equation of a plane passing through the line of intersection
of the planes g, x+b,y+cz+d, =0, ayx+byy+ez+dy=0 is of
the form

ax+by+oz+d+Manx+ byt +d)=0.

Ex. 12. Find the equation of the plane passing through the line of intersection
of the planes x+y+z-1=0, 2x-2z=0 and perpendicular to the plane
4x—-y—2z=0. '

The equation of the plane is of the form
x+y+tz-1+22x-2)=0;
ie. H14+2)+p+2z(1-21-1=0,
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This plane is perpendicutar to the plane 4x -y~ 27=0 if
H+22)-1-A1-1)=0; ie r=-4
.. Required equation is
INe+y+z-1)-(2x-2)=0,
or, 8x+10p+11z-10=0.

EXAMPLES 14¢

1. Find the coordinates of the points in which the axes meet the plane
X~2y+3z=46.

2. Show that the plane ~+°
coordinate axes. a b

3. Find the equation of the plane determined by each of the following
sets of three points: (i) (0,0,0), (1,1, 1), (2,0,3); (i) (1,0,0), (2 1,0),
(-1, -L2; () (2, -1, 1), (-1, ~3,1), (-2,3, -1

4. The normal to a plane from the origin has unit length and direction
ratios 1: —2: -2, Find the equation of the plane.

5. For each of the following planes find the length and the direction-
cosines of the perpendicular from the origin: () x=2; @i} 2=-1;
Gi)dx -4y =10; (iV)2x-y+2z=6; (VIx~y+2=+3; (Vi) 2x+ 5y4 3z
(vii) Sx - Ty-6z+3=0, .

6. Find the equation of the plane through the origin paraltel to the plane
x-2y+2z-9=0. What is the distance between these parallel planes?

7. Show that the points (4,5, 1), (4,4, 4, (0, -1, -1, (3,9, 4) are
coplanar,

8. Find the acute angle between each of the following pairs of planes:
() 2=0, x—z=0; (i) x=0, x+y+z=1; {iii) x~2z=0, 2y—z=0;
(ivIx+y+z=1,5x—y-4z=4,

9. Obtain the equation of the plane through the point (1, 0, 1) and through
the line of intersection of the planes x—y+2z =1, 2x+y - z=0.

10. In each of the following cases find the numerical length of the per-
pendicular from the point stated to the given plane: () (1,0,0), x+y-r=1:
(i} 0, -1, 1), 2x~p=3; (i) (1,1,1), 3x-2y+z=4; (iv) (-2, 1, -1},
Sx—Typ+3z=0,

11. Show that the points (I, ~ 1, 3), (3, 3, 3) are equidistant from the plane
Sx+2y-7z+9-=0 and on opposite sides of it.

12. Are the points (1, -1, 1), (- 3, 2, 2) on the same or opposite sides of
the plane x~ 2y +z =37

13. Find the equation of the plane through (1, 1, 1} and the line of
intersection of the planes x -2y -z+ [ =0, 3x - y+4z+ 3=0,

4, If 4 is the point (1, -2,2), find the equation of the plane drawn
through A perpendicular to the line joining A to the origin.

15. Show that the three planes 2x-y+::1=0, x+y-37-2=0,
x—8y+ 11z+ 8=0 intersect in a straight line,

16. Find the equation of the plane which bisects perpendicularly the line
joining the points (1,0, - 1), (2,2, 1.

-4 .
+E_==I makes intercepts a, b, ¢ on the
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17. Find the point of intersection of the planes 2x + y +z=0,x - 3y + 2z =3,
Ip-y-z=-5

18. Obtain the equations of the planes: (i) passing through the x-axis and
the point (1, 2, 3); (i) passing through the y-axis inclined at an angle of 30°
to the plane z=0.

19. Find the equation of the plane through the points (1, — 1,2}, (2, [, - 1)
perpendicular to the plane x + y+z=1.

20. The plane 2x-y+ 22+ 8=0 is rotated through 90° about its line of
intersection with the plane x+y—z+2=0, Find the equation of the plane
in its new position.

21. Find the equation of the piane through the points (0, 1, 1), (-2, 1, - 1)
and parallel to the line joining the origin to the point (2, 1, 1},

22. Find the equation of the planes which bisect the angles between the
planes 3x +4y =2, 2x-y-2z=1.

23. The vertices of a tetrahedron are A(0, 0,0), B(3,4,0), C(2, -1, O,
D{1,2, 3. Find: (i) the equations of the four plane faces; (ii) the length
of the perpendicular from C to face ABD; (iii) the angle between faces
ABD, BCD.

24. Determine the distance between the paraliel planes x--3p+z-2=0,
2x—-6p+2z+3=0.

The straight line. A straight line is determined by the intersection
of two planes and consequently will be represented by a pair of linear
equations of the form

axtbyoztdi=0=ax- byt cz+d,
Any set of values of x, y, z which satisfy the two equations simul
taneously will give the coordinates of a point on the line,
The above form of the equations of a straight line is not particularly
“useful and the symmetrical form in terms of the direction-cosines of the
line and the coordinates of a point on it has more general application.

Symmetrical form of the equations of & straight line. Consider a
straight line drawn through the peint A(«, 8, ) with direction-cosines
5L, m,n

Take P(x, y, 2} as a variable point on the line and let AP —=r,

Referring to Fig. 101, in which a rect-

angular parallelopiped has been drawn 2 AT
with AP as a diagonal and with edges Fi—:r“——— o/
parallel to the coordinate axes, " . i

AL=APcosLLAP=Ir; ¥ -"h——]—;m
but AL=x—= therefore x—u=Ir, [ A— v

%
4

Similarly, y—pB=mr; z—y=nr. Y

x—oa_y-P_z-y_ /
Hence ) m a r, x/

the equations of the straight line. Fia. 101,
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If the direction ratios of the line are given as a:b:e¢, then the
equations will be

Ta b e T AErRTs T s

Any point on this line will have coordinates (a+2a, 8+ b, v +ic).
Equations of the straight line joining the points (x;, ¥y, z,), (X,, Vs, Z,)-
The direction ratios of the line are (x,—x,): (3%~ ¥ (23— 2)).
.. The equations of the line are
X=X YN _27%,
X=X YooV L, L
Ex. 13. Find the direction-cosines of the line with equations x+y-z+1=0,

dx+y - 2z+2=0 and obtain the equations of the line in the symmetrical form.

Let the direction-cosines of the line be in the ratios p:g: r.

Now normals to the two planes which determine the line have direction
ratios 1:1: -1; 4:1: -2 and as the line of intersection is perpendicular
to each of these directions, we have

ptg—r=0, 4p+g-2r=0.
Spigir=-1:-2: —3~l'2'3
3
'\/ 14 \/ 14" /14’

To find the symrretrical form of the equations, the coordinates of a point
on the line must be determined; the point of intersection with plane z=0
will suffice.

Putting z=0 in the equation of the line, we have

x+y+1=0; dx+y+2=10.

Solving, x=-d y=-%

S0 a point on the line has coordinates (- 4. - %, 0),

Hence the equations of the line are

x+% _y+ _—2~ z_r

1 2 3 Vi
whete r is the distance of the point (x, y, z) from the point {— 4. - %: 0)

Le. the direction-cosines of the line are —

-1 yp+3 ]
Ex. 14. Find the point of intersection of the line 2~ 5 y"l {; and the
plane 3x-y-z~=11.
i x*-1_p+3 231
Writing 5 =T =3 =k,
then x=14+2 y=-3-k z=-1+3k

Sabstituting in the equation of the plane,
1 +2) - (-3-B)— (- 1+3)=11; ie k=1,
So the point of intersection has coordinates (3, -4, 2).
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Ex, 15. Find the length of the perpendicidar from the point P(5,2, - 1) 1o
the line (x — 1}j2 =1 =zf3.
x-1 y z

Writing = <j=3=% then any point @ of the line has

coordinates {1 + 2k, &, 3%).
The direction ratios of PO are (2k-4): (k- 2): (3k+1).
.. PO is perpendicular to the given line if
2% -+ 1k-2D+ 303+ 1)=0; ie k=1

Hence Q, the foot of the perpendicular from P to the line, is the point

2,4, 1.
So the perpendicular distance PQ =+/{3%+($)2+ (- $)%} =1/70.

Ex. 16. Find the image,Q, of the point P(2, 1, - 2) inthe plane x — 2y + 2z =5.

Let PN be the perpendicular from P to the plane.
Then, as P is on the same side of the plane as the origin, the direction-

-

cosines of PN are 4+ — %+ % and 50 its equations are

e (D

where r is the distance of the point (x, y, ) on the line from P measured in
.—).

the direction PN.

Distance PN = + ﬁ) =3 numerically.
.. Distance PO =2PN =6,
So taking r =6 in the equations (i),
x=d4, p=-3, z=2.
Le. © is the point (4, - 3, 2).

EXAMPLES 14d

1. Write down the equations of the axes OX, 0%, OZ,

2. What are the equations of a line passing through the origin and making
equal angles with the positive directions of the axes?

3. Express the equations of the following lines in the symmetrical form
and hence obtain the direction-cosines of each line: (i) 2x=y=z:
(i) x—1=2p=3z; (ifi) x+1=2p+3=-2z-1; (v} 3x-2=1-y=-4z,

4. Express the equations of the following lines in the symmetrical form:
Dx~y=1,y-22=2; (ii}2x-z=0,x+y+z=1; (lii)x—y-z=1,y-2z=0,

5. Write down the equaticns of the lines joining the following pairs of
points:

(0,0,0,42,1,3); G)(, -1,0,(2,0,3); (DG -1,2),(-1,1, ~2).

6, Find the direction-cosines of the line of intersection of the planes
x-¥+ze=l, 2x+p-2+2=0.
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7. Write down the equations of the line through the point (2, B,) and
equally inclined to the positive directions of the coordinate axes.

8, Find the coordinates of the point of intersection of the line
xfl =(y=1){2=(z+ 1)/ - 2 and the plane x+ y -z =1,
9. Find the equation of the plane passing through theline x - z=0m2yx 4y
and the point (1, 2, 2).
10. Determine the equation of the plane containing the line
x2=(y-1)-1=(z+2)/3
and passing through the origin.

11. Find the coordinates of the foot of the perpendicular from the origin
to the line x/2 = — y/1 =(z - 3)/ - 2 and deduce the length of the perpendicular.

12, Find the angle between the lines 2x - 1 =p+1=1-2z, ¥ =2y+3=z+2,

13, If lis the line (x - 1)/2 =y/3 =(z - 3)/4 and P the point (0, 1, - 1), find
the equation of the plane which contains f and P and also the equation of
the plane through { perpendicular to this plane.

14. Find the perpendicular distance of the point (1, 0, - 2) from the line
(x-3=yp2=(z+1)/~-1.

15. Obtain the equation of the line through the point (1, |, 1) perpendicular
to the plane 2x - y-2z-3=10.

16, Find the equation of the plane containing the line

(x-43I=0y-d=(z-1)2
and perpendicular to the plane 9x+8y+2z—-1=0, Hence write down the
equations of the orthogonal projection of the given line on the given plane.

17, Find the coordinates of the point in which the line joining the points
(2, -1,0), (1, 1, 2) is met by the perpendicular drawn from the erigin.

18. Find the equations of the two planes containing the line

Ix=1y+2)=z-2
which are inclined at 45° to the plane x- y=0.

19, Find the image of the point (— 1, 2, 2) in the plane 2x +y -2z =2.

20. Delermine the coordinates of the point in which the line

x-1=y2=(z+1)3
meets the plane z=0. Find also the coordinates of the image of the point
(1,0, - 1) in the plane 2=0 and deduce the eguations of the image of the
given line in the plane z=0.

21. Find the acute angle between the c¢common line of the planes
x+2y—6z+13=0, 2x-2y-3z+8=0 and the line joining the points
4, -1, 1) (2,1, 2). '

22. The vertices of a tetrahedron are A4(0,0,0), B(2,0,0), C(3,2,0),
D(i, 1, -1). Find: (i) the angle between 48 and the face ACD; (ii) the
equation of the perpendicular from A to the face BCD; (iii) the length of
the perpendicular from B8 to 4D,

23. Find the equations of the line of intersection of the planes
x*-p+2z-1=0, z=0. Agcuming that the axis of r is vertical, find the
direction-cosines of a line of greatest slope of the plane x -y +2z-1=0.
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Coplanar lines. Two lines will be coplanar if either they intersect
or are parallel.

To find the condition that two lines intersect. Let the equations of
the lines be

X—e y-B_z-y x—w« y-Pp_z

™7 Tm T n r m n

If the lines intersect they will lie in a plane, and since this plane passes
through the point (=, 8, ), its equation can be taken as

ax— ) +Hy—pr+celz—y)=0 . . . . @
As the point (', B, ) also Ties en this plane,
a(w ~ @)+ b~ B+l —yy=0. . . . (i)
Since the nornial to the plane is perpendicular to both lines,
al+-bm+cn=0. . . . . . . (i)
al’+bm +en'=0.. . . . . . (iv)

Eliminating the ratios a: b; ¢ from equations (ii), (il}), (iv) gives the
required condition

m n
i [ r

o e BB Y-y
; I m n ‘

When this condition is satisfied, the equation of the plane centaining
the lines is obtained by eliminating the ratios a: b: ¢ from equations
@i), Giid), (iv).

Equation of plane is |x—a y—f z—+|=0.

| m n

' m n

Ex, 17, Show that the two lines x-2=2y-6=3z, 4x- 11 =4y-13=3z
intersect and find the equation of the plane determined by them.

Writing the equation of the lines in the forms

’

x=2 y-3_z x-I y-RE =
1 S S| ¥ 3
then @ -a -8y -y=1i 1 0|=3D-i=0
] L H ‘ 1 i %
I S R P

o the:

7]

Hence the lines are coplanar, and
parallel.

Equation of plane containing the lines is
x-2p-3z|=0; ie |x-2yp-3 ri=i

1 3+ 4 6 3 2

I 14 3 3 4

Simplifying, 2x-6y+3z+14=0.

intersect, as clearly they are not

e
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Skew lines. Lines which are mot coplanar, that is they neither
intersect nor are paralilel, are said to be skew.

To show that two skew lines have a common perpendicular. Suppose
AB, CD are the two skew lines
(Fig. 102).

Through any point L of 4B
draw a line LM parallel to CD;
let the orthogonal projection of
CD on the plane ALM be C'D".

If P is the point of intersection
of AR, C'D' and Q is the point of
CD of which P is the projection,
then PQ is perpendicular to both
the given lines.

For, as @P is a perpendicular to the plane ALM,

L QPB=LQPD'=90°
But the plane ALM is parallel to CD, and so C'D’ is parallel to CD.
5 LPQC= L QPD =90°,

Hence P is the common perpendicular to the skew lines.
If U, V are any two points other than P, &, on the separate lines, then

PQ<UV.

For, referring to Fig. 102, where W is the projection of ¥ on
the plane 4LM, it is clear in the right-angled triangle UVH that
WV < hypotenuse UV.

Also as PQVW is a rectangle, WV=PQ.

Hence PR UV,

[

Frg. 102

Le. the common perpendicular is the shortest distance beiween the
two skew lines.

Shortest distance between two skew lines with given equations. Let
the equaticns of the skew lines AB, CD be '
X—o_y—PB_z—y, Xx—ua y—B _z—y

- = —re =" =

i m n’ ¥ m n

Then, if the direction-cosines of the common perpendicular PQ are
in the ratios 2:p: v,
I+ et =0,
atmu+nv—=0.
Sohsprv=(mn —n'n): (nl'—n'l): (Im" = I'm).
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But the equation of the plane through 4B parallel to CD (plane

ALM in Fig. 102) is
Ax— ) +u(y—B)+v(z—y)=0. . . )]
Hence PQ=rperpendicular from (o B', ") to the plane (1),
_ Mo — C{);‘l{’ﬂ:—;flt;;(y - numerically,
_ (o' — o)mn' —m'm)+ (' — BY(nl' =D+ —yNim'—I'm)
VA —mnp + (nl’ — D2+ (Im" = I'm)%

This result can be expressed more conveniently in the form
a—aP'—B vy -y +v{(mn'—m'nP+ @ -0 +{m’ - Vm)*}

i

m n
'

I m n'

The equation of the plane 0.4 B containing the common perpendicular
and the line AB is of the form

plx—ayt+g(y—B)+rz—y)=0. . . . (1)

As a normal to this plane is perpendicular to both 4B and PQ,
pltgm+m=0, . . . . . . (i
and plimn’ —m'n)+ gl ~n'y+ /(I —Fm)=0. . . (i)

Eliminating the ratios p: g: r from equations (i), (ii), (iif) we obtain
the equation of the plane QAR in the form
X—d y—B z—y |=0,
) m n
m' —~m'n aF—n'l ' —Fm

Similarly, the equation of the plane PCD is

x—a  y-B  z—y i=0.
f! mt nl’ :

mn’ —n'n nl' —n't ' —Um|

Ex. 18, Find the shortest distance between the lines x=y+2-=6z-46,
A+ 1=2y=-12z

The equations of the lines in the standard form are
x_y+ 2 z-1 x4+l p =z

6 6 1° 12 6 -1
-, The shortest distance between them is the numetical value of
1 -2 1 +\/{(—12)’+(18)9+{—36)’}.
6 6 1
12 6 -1

Omn evaluation this expression is equal to — 2 and so the shortest distance
between the lines is 2 units.
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Ex. 19. Points P,  an the lines
(x-DR2=y1=(z+3)}~1, (x+2/3 =(y— 2} -2=z{1
respectively are such that PQ is the shortest distance between the two lines,
find the coordinates of P and ).
The equations of the lines can be written
x=1_y z+3_, X+2_y-2 z_
2 1 -1 % 33T
Hence P can be taken as the point (1+ 23,3, - 3-2) and ( as ihe point
(- 2434, 2~ 21, ).
So the direction ratios of PQ are (~3-2x+3p): (2-%-2u): (342 +i1)
and a5 PQ is perpend.cular to each of the given lines,

23~ Dot 3+ 12~ 2= 20) - I3+ A4} =0,

and H-3-R+H)-22-2-2+ 13 + 2+ =0.
Le. =7-6A+3u=0; ~10-37+[4u=0,
Solving, r=-5 =13

K

-~ P, Q are the points (- $5 - 5% ~437) (- 34 £4, 12) respectively.

Ex. 20. Find the equations of the ransversal through the point (2,1, 3)
which intersects each of the lines x =y =z, x - 1=y+2 =(z+ 1)/3.

The required line is common to the two planes which pass through the
given point and contain each of the given lines.

Writing the equations x =y =z in the form x-y =0, y - z=0, it follows
that the equation of any plane containing this line can be expressed as

x-y+uy-2=0.

This plane passes through the point (2, 1, 3) if 2 —=4-

.. The equation of the plane through the given point and the line x = y=z
s 2x-p—z=0.

In like manner, the equation of the plane through the given point and the
second line is found to be

Sx+y—-2z-5=0,
So the equations of the required transversal can be written
2x-y=-z=0=5x+y-2z-5.

Simplified form for the equations of two , D
skew lines. Let PO be the common /
perpendicular of the skew lines AB, €D 9

(Fig. 103). 1

Through O, the mid-point of PO, draw A P
lines A'B', C'D’ respectively parallel to :fﬂf';g;i":#-
AB, CD, and take the bisectors of the ¢ -~ g Mh"‘*‘-a’
angles between these lines as the axes of Rk
x and y with @ as the axis of z. 2

Let PO=2¢ and angle B'OC’, the angle \

between the skew lines =2, FiG. 103,
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Then the equations of A'8’, C'D’ are respectively
y=xtang, z=0; y=—xtana, z=0.
Hence the equations of AB, CD are respectively
y=mx, z=—¢; ¥y=-—mX, z=¢,
where m=tan =
Ex. 21. Points L, M taken on each of two perpendicular skew lines are

such that LM is of constant length 21.  Prove that the locus of the mid-point N
of LM is a circle.

If 2¢ is the shortest distance between the skew lines (¢ </), the equations
of the lines can be taken as

y=x,Z=-¢ ¥y=-x z=¢ [As2e«=30", m=1]
So L, M can be taken as the points (x, =, - c), (B, — B, ¢) respectively.
. Nisthe point (Ja+ §, 3o - B, 0).
So N lies in the plane 2 =0 and its x, y coordinates are

x=Ha+p), y=H=-P)

But LM =2/,
S (a= B+ (m+ B + (200 =41%
Le. 4%+ 4x2+ 4c? =42
or e e

So the equations of the locus of & are
x+2=1-c? 7=0—a circle

EXAMPLES 14e
I. Show that the following pairs of lines are coplanar and in each case
find the equation of the plane in which they lie:
(i x-1=y-1=(z-2)-3, x+2=y+2~2z;
(D) x/1 =0r+2)f3=(z-1)/2, (x-2}/-3-0y—-Df -3 =z/4;
Gii) x2=(=1)/=-2=(-1)/-10, (x+1)2=(y-2)1 =(z-06)/ -4
2. Find the common point of the intersecting lines
(x— 4 =(-NA=(z+3) -5, (x~8)T=y-4-(z-5)/3

3, Obtain the equation of the plane passing through the points (0, — £, 1},
(2, — 11, 1) and parallel to a line with direction ratios 2: ~1:1. What is
the equation of the plane determined by the parallel lines

x2=(y+ 1)~ 1=z~ 1 (x-2j2=(y+11)/-1=2z-17
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4. Find the shortest distance between each of the following pairs of skew
lines:
(i) x=p=0, x—1=y=z;
(i) y=2=0, (x=2)/2=y/~ 1 =(z+ 1)/3;
(i) xf3 =pfd=z/-12, (x- )4 =(p+2)/ - 2=(z- 1)3;
(iv) x=y-2=6z-12, x-2=2y=— 12z
5, If PQ is the common perpendicular of the two lines
x-10=(y-9)3=(2+2)/-2, (x+1)2=(-12)/4=2-35,
find: (i) the coordinates of P and ; (ii) the equations of PO.
6. Find the equations of the straight line through the point (2, 1, 3) which
intersects each of the lines x = -y =2z, x—2 =y—3=(z+2)/3.
7. Write down a simple form for the equations of two skew lines inclined
at an angle of 60° with distance apart 2 units.

8. Points L(x, , - c), M(8, — B, ¢) are taken on the perpendicular skew
lines y=x, z=-¢; y=-x, z=¢ such that LM =+/2PQ, where PO is the
common perpendicular. Prove that o?+ B2 =2¢2,

9. Prove that the shortest distances between the diagonals of a rectangular
parallelopiped and the edges which they do not meet are be/+/(5°+ e,
cajv/(c*+a®), ab/\/(a®+ b, where a, b, ¢ are the lengths of the edges.

$0. The vertices of a tetrahedron are A{0, 1, 0), B(2,0,1), C(i,1,3),
D(-1,2, - 1). Find the shortest distance between the edges AB, CD,
11. Find the ratio in which the shortest distance between the axis of z
and the line joining the points P(2, 2, 1), Q(3, - 3, - 1) divides the line PO.
12. Find the equation of the plane through the line
x-1)2=y+2=(z-2)/3
parallel to the line x/2=p/-2=z. By writing down the length of the
perpendicular from the origin to this plane, obtain the perpendicular distance
between the two given lines,
13. Find the direction ratios of the line through the point (1, 0, 0} which
intersects each of the lines x - 1 =(y+ 1)/2 =(z— 2)/3 and
. x+2f3=y-3=02+1)/2.
14. Obtain the equation of the plane determined by the parallel Jines
Hx+D=y-3=Hz-4), Hx-D=y+1=3z+1).
I5. If P, O are points on each of two skew lines, prove that the point R
which divides P in a constant ratio lies in a plane parallel to the two lines.

16. Variable points on each of two skew lines are a constant distance
apart, prove that the line joining them makes a constant angle with the
common perpendicular of the two lines.

17. A line of constant length has its extremitics on two fixed non-
intersecting straight lines; show that the locus of its mid-point is an ellipse.

18. A rectangular trapdoor ABCD, AB=4 m, BC=8 m, which can turn
about AB occupies the horizontal position ABCD when closed and the
position ABC’D’ when opened. If the door is opened through an angle
of 60° find the shortest distance between the lines AC”, BD.
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Some properties of the tetrahedron

(i) The joins of the mid-points of opposite edges are concurrent and
bisect each oiher.

For taking the vertices 4, B, C, D (Fig. 104) N
with coordinates (x,, 3., z,), r=1, 2, 3, 4 respectively
it 1s easily established that the coordinates of the
mid-point of the line joining each pair of mid-points
of opposite edges are

Bxy X+ X+ x),  A0n+ et yatyy, e
‘l{zl‘f'Zg'{' 23 + z‘)],
and the result follows.

(i) The joins of the vertices to the centroids of the Fie. 104.
opposite faces are concurrent.

The centroid G, of triangle BCD has coordinates
Hxy+ %3+ %0, $(ra+yatyds 3@zt zd)
So the point & on AG, which is such that the ratio G,G: GA=1:3
(Fig. 104) has coordinates
[+ X+ X+ %), 200+ Yat yatry), 2z + 2+ 2+ 2)]

As the coordinates of G are symmetrical in the coordinates of the
four vertices of the tetrahedron, it follows that & lies on each join of a
vertex to the centroid of the opposite face and so the result required.

N.B. It will be noted from (i) that & is also the point of concurrence
of the lines joining the mid-points of opposite edges.

(i) If two pairs of opposite edges are perpendicular, so also is the
third pair.

I BC is perpendicular to 4D,

(3 —x9)(% — %1) + (Vs — ¥)Pu— ¥1) +{23— 2z, — ) = 0.
If AC is perpendicular to BD,

(xs—2)(xs —x) + (¥ — ¥~y + (25— 2(2— 2) =0,
Subtracting these equations and noting that
(35— 2){2y — 31) — (g — X}y — ) = XgXg — XXy~ X1 X + X1 Xy,

=(x;— x:}x;—x,), with similar
results in y and z,

we have (X3~ x) (%~ x) H(y:— )0~y + (Z— 2z — 20 =0.
;. AB, CD are perpendicular.
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(iv) If a pair of opposite edges are equal, then the lines joining the
mid-points of the other two pairs of edges are perpendicular.

For suppose that AB=CD,
then (x; —x, ) +ete. = (x;— x5)* +ete.
Le. [(xq— Xy} —(xy — x4)%] +etc. =0,
[xg+xg— 2+ 2 J[xg b xy— 3+ x5] Hete. =0, . . (D)

But the direction ratios of the line joining the mid-points of AC, BD

are [p+ g =+ Xg] 2 [¥at Ya= Pt Vsl [Ze+ 24— 21+ 24]
and those of the line joining the mid-points of 4D, BC are

(ot xg—xy+x): et ys—+nli(zat 23—zt 2]
Hence by equation (i) above, these lines are perpendicular.

(V) If two pairs of opposite edges are equal, then the join of the
mid-points of the other pair is the common perpendicular of these
two edges.

For suppose that AB=CD, then from (iv) above

[xz'f_xa‘“xl'i_x‘][xg_"x‘_xl+x;]+ etC.=0. B . (i)
Similarly, if BC—~ 4D,

(st xg—xs 4+ 23] [x) + X3~ X+ X, ]+ ete.=0. . . (i)

Adding equations (i) and (i) and noting the commeon factor
XXX+ X,

[+ x5 — x5+ x,][2x, - xz] +ete. =0,

Hence the line joining the mid-point of edges AC, BD is
perpendicular to 89,

Similarly by subtracting equations (i) and (ii), it follows that the line
joining these mid-points Is also perpendicular to AC,

MISCELLANEOUS EXAMPLES

1. Find the perpendicular distance of the origin from the plane containing
the points (1, —2,0), (--3,0, 1), €2, 2, 2).

2, What arc the directien-cosines of the line with equations

{(x—-D2—(y+2}~-6=2/3?

Find the coordinates of the peint of intersection of this line and the plane
2x-p=0.

3. Find the equation of the locus of a point which moves such that ils
distances from the poiats (- 1,3, 2), (2. 0 - 1) are equal.
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4. Determine whether the points (3,3, - 1), {1, - {, 2) lic on the same
or opposite sides of the plane x - 3y—-2z=35.

5. Find the acute angle between ihe lines (x - 1)}/3=y+2 =(z+ 1)/2 and
x{-2=(p-1){3=z-2.

6. Prove that the planes 5x-3y+4z-1=0, Bx+3y+5z-4=0,
X+15y-2z-8=0 have a common line of intersection and find the
inclination of this line to the axis of z.

7. Find the ratio in which the line joining the points (0,1, 1), (3,2, -
is divided by the plane x—y -2z =<1,

8. Find the angles of the triangle whose vertices are the points (0, 1, 1),
(2, -1,2) (1,3, 3).

9, Prove that the locus of a point whose distances from two given planes
are in a constant ratio is a plane.

10, Find the acute angle between the two lines whose direction-cosines are
given by the equations f+m+nr=0, A+ m% - nt=0.

11, Show that the equations x~3r+2, y=2r-1, z=1r+3 tepresent a
straight line. Find the angle between this line and the plane 2x+2y+ 2z —19.

12. Find the equation of the plane through (1, 4, 3) perpendicular to the
line of intersection of the planes 3x+4y+7z4+4=0, x—y+ 22+ 3-=-0.

13. Show that the line x/a=py/b=z/fc is parallel to the plane
Ix+my+nz-p=0,if la+mh+nc=0. If this condition is satisfied, what is
the shortest distance between the line and the plane?

14, Iftis the line (x — 2)/2 =(¥ - 1)/3 =(z ~ 4)/6 and Pis the point (2, -1, 2)
find: (i) the equation of the plane containing P and /; (ii) the equation of
the plane through / perpendicular to this plane.

15. Prove that the perpendicular distance of a vertex of a cube of side 4
from a diagonal which does not pass through the vertex is a+/%

16. Find: (i) the equation of the plane containing the axis of z and the
paint (2, — 3, 1); (ii) the equation of the plane passing through the points
0, 1,0, (4, 1, 1), (2, ~3,1). Also find the angle of intersection of these
two planes.

17, Find the shortest distance between the skew lines
3x-3=4y+ 8 =12z, - 21x+ 84 =Ty -+ 35 =6z- 30,

18. Prove that the lines

(x~3)2=0p+1)-3=(z-4)6, (x- 1)1 =p/d=(z+2)/3
are coplanar and find the coordinates of their common point,

19, Find the equation of the plane through 4{ -1, 1, 1} and B(1, -1, I}
perpendicular to the plane x+2y+2z=5. Find also a point P on the
common section of these planes such that 4P and BP make equal angles
with the normal at P to the plane x +2y + 2z =5.

20, If A is a fixed point on a straight line through the origin equally
inclined to the three axes, prove that any plane through A will intercept
lengths on the axes the sum of whose reciprocals is constant.
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21. Find the acute angle between the common line of the planes -
X+y—zml, 2x-3y+z=2 and the line joining the points (3, -1, 2),
(4,0, - 1), Find also the equations of a line through the origin which is
perpendicular to both the given lines.

22, Show that the lines of intersection of the three planes x +y+z=1,
5x-y-4z=4, 4x+2y+z=§ are parallel and prove that the planes form a
prism whose cross-section is a right-angled triangle.

23. Find the equations of the line through the point (1, 2, 3) which
intersects each of the lines x =y =2, x—4=y-5=(z+ 1)/2.

24. Find the equation of the planes which bisect at right angles three edges
of the tetrahedron with vertices (1,2,3), (3,2, -1}, (-1, 1,2, (1, -1, -2)
and hence determine the coordinates of the centre of the circumscribing
sphere of the tetrahedson.

25, Find, in the symumetrical form, the equations of the line of intersection
of the planes x - 2y+3z=1, 2x-3y+z=3. Hence find the coordinates of
the point on this line which is nearest the origin.

26. Two edges AB, CD of a tetrahedron ABCD are perpendicular. Prove
that the distance between the mid-points of AC and BD is equal to the
distance between the mid-points of 4P and BC.

27. Find the equations of the line through the point (1, 2, 3) which cuts
the line x+1=2y~4 =z+4 and is parallel to the plane x + 5y +z=0,

28. Find the equation of the plane which contains the ling
Hx-D==-y-1=3z-3)
and is perpendicular to the plane x+2p+z=12. Deduce the direction-
cosines of the projection of the given line on the given plane,

29, Show that the plane which contains the parallel lines
x-3=-Xy-2=Hz-1), x-2=-HNy+N=3z+1)
has the equation 11x—y-3z=28. What iz the distance between the
paralle] lines?
30. Two skew lines AP, BQ inclined at 60° are intersected by their common

perpendicular at A4, B respectively; P, O are points on the lines such that
AQ is perpendicular to 8P, Prove that AP . BQ =2A48%

31. The equations of two lines are x =p+2g=06z~ 64, x+a=2y=- 12z,
show that the shortest distance between the lines is 2« and find the equations
of the line along which it lies.

32. Find the equations of the three planes which pass through the line of
intersection of two of the planes x+y+2z+3=0, 2x+y+2z+5=0,
X +3y+ 22+ 6=0 and are perpendicular to the third. Prove that the planes
50 obtained have a common line of intersection and that the plane through
the origin perpendicular to this line is 7x+ 5y - 2z=0.

33. Assuming the axis of z is vertical, find the inclination to the horizontal
of the plane through the points (0,0, 0}, (2,4, ~ 1), (3,2, ). Also find the
direction ratios of a line of greatest slope of the plane.
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34, Prove that the equation of the plane through x/I=y/m=z/n and
perpendicular to the plane comtaming x/m=y/n=z/l, xin=y/i=z/m is
xlm - ny+ Yot = I+ 21— m) =0,

35. Find the direction-cosines of the line through the origin which intersacts
~each of the lines (x—1)/2=(y—2)/3 ~(z- 3)/4 and

(x4 2)/d =(y - 3)/3 =(z - 4)/2.

36. If ABCD is a tetrahedron in which 4B, CD are perpendicular, prove
that AC'4+ BDR<AD?+ BC? If also AC, BD are perpendicular, prove
that BC2+ AD?=CA%+ BD =AR*+ CD2

37. The inclination to the horizontal of two intersecting perpendicular lines
are «, B. If the plane determined by the lines is inclined at an angle § to the
horizontal, prove that sin® ¢ =sin? « + sin? B.

38, Linesarc drawntointersect thelines y—mx=0=z- ¢,y +mx=0=z+¢
and to make a constant angle with the z-axig, Show that, if — 1 <m<1, the
locus of their mid-points is an ellipse of eccentricity (1 — m*)i.

39. The ends of a straight line lic on two fixed planes which are at right
angles to each other and the straight line subtends a right angle at each of
two given points; show that the lecus of its mid-peint is a plane.

40. If two opposite edges of a tetrahedron are equal in length and are at
right-angles to the line joining their mid-points, show that the other two pairs
of edges have the same properties.



CHAPTER, XV

THE SPHERE

The equation of a sphere. Let P(x, y, z) be any point on the surface
of a sphere centre the point A(e, b, ¢) and radius r.
Then as AP?—r2,
(x—-aP--(y-bpP+(z—e®=rt . . . . (i)
This is the equation of the sphere centre (a, &, ¢), radius r.
Conversely the general equation

XE+yt-tz? 4 2ux+2vy 2wzt d=0, . . . (i}
which can be expressed in the form
(x4 H(y Pz h = v wt - o
is the equation of a sphere centre (—wu, —v, —w), radius
AVt vt d),
For the sphere to be real, 12+ v*+wizd,

Ex, 1, Find the centre and radius of the sphere
X4l x4t dp-z+ [ =0,
The equation can be written
x-1P+(+2P+{(z-3PF=11
So the centre of the sphere is the point {1, — 2, 1) and the radius is $+/17,

Ex, 2, Show that the spheres xP4+)%4:%-2x42y-42z-19=0,
X2+ 32+ 2% dx — 10p +25=0 fouch each other externally.
The centres of the spheres are the points {1, - 1,2), (-2, 5,0) and the
radii are 5 and 2 respectively.
Distance between the centres =+/{32+ 6%+ 2%} =7,
=sum of radii,

Hence the spheres touch externally.

Sphere passing through four points. In the equation of a sphere,
equation (ii) above, there are four constants i, ¥, w, d, and consequently,
in general, four points will uniquely determine a sphere as substitution
of the coordinates of each of the points in equation (ii} will lead to
four equations in four unknowns. Clearly a special case arises when
the four points are coplanar and concyclic, as in this event only three of
the equations will be independent.

304
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Ex. 3. Find the equation of the sphere which passes through the points
(0; 09 1)9 (" Is 2’ 2); (1, 3; 0)1 (2. - l; - 3)'
Let the equation of the sphere be
B2 2+ 2up 4 Jwr+ d=0.
Since this equation is satisfied by the coordinates of the four points,

1+2w+d=0, . . . . . ()
9-2u+dvidwsrd=0, . . . . . (i
10+2a+6r4+d=0, . . . . . (i)
14+4u-2v—6w+d=0. . . . . . (iv)

Subtracting equation (i) from equations (ii), (iii), (iv) in turn,

—2u+4v+2w+8=0,
2u+6y-2w+9=0,

du—2r—-8w+13=0.

Solving these equations, u=$d v=- i w=%$F

and substituting in (i), d=-3%2
Hence the equation of the sphere is
{2+ +25+53x - 17Ty +47z - 52=0.

EXAMPLES 15a

1. Obtain the equations of the spheres with the following centres and
radii;
(i) centre (0, ¢, 0), radius 1, (ii) centre (0, 0, 0), radius +/3;
(iif) centre (1, 0, - 1), radius 1; (iv) centre (-1, 1, 2), radius 3;
(v) centre (3, ~ 1, - 4), radius +/5; (vi) centre (a, g, ), radius 2a.
2. Find the centre and radius of each of the following spheres:
(i) x2+38423=3; G 22 +)2+ 22 -dx=0;
{iii) *+)¥+ 224+ 2x—-dp+62-2=0;
(v) 33+)3 4 22— 3x+2p+2z-1=0;
(V) 2034+ 324+ 28 - 6x+ 2y -5z +1=0
(vi) a(x3+ 3+ 28+ 2bx— 2cp+ d=0.
3. Find the equation of the sphere centre (I, I, 1) which touches the
coordinate planes,
4. Find the equation of the sphere centre (-2, 1, - 1)} which touches
the plane x+y+z =2,
5. Show that the plane y— z+ 3=0 touches the sphere
. ALy 4x+2y+3=0
at the point (2, -2, 1).
6. Find the equations of the diameter of the sphere
x4+ 228+ 2x - By + 6z=0
which passes through the origin. What are the coordinates of the other
end of this diameter?
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7. Find the equation of the sphere centre (1, - 1, 2) which passes through
the point (2,0, - 1).
8. Prove that the plane 2x-py-2z=9 does not meet the sphere
xt+ 32+ 25— 8=0 in real poinis.
9, Find the equations of the diameter of the sphere
X4yt -3x+dy-2:-13=0

of which one end is the point (1, 2, — 1}. Also find the coordinates of the
other end of the diameter.

10. Find the equations of the normal to the sphere
a2+t -dy+62-1=0
which passes through the origin.
11. Prove that the spheres
Pyt 2 4y-22-3=0, x*+)%42%-4x+8y-6z+13=0
touch each other externally.

12. Prove that the square of the length of the tangent from the peint
(x', ¥, 2) to the sphere x¥¥+ 12+ 22 =p2 js 24 324 22 )2

13. I Alxy, 3y, 2,), Blxg, s, z3) are the extremities of a diameter of a
sphere and P(x, y, ) is any point on the sphere, use the fact that AP, BP are
perpendicular to obtain the equation of the sphere in the form

(x ~ x)(x — a3+ ¥ =y )y - Y} + (2~ 20z~ 29} =0.
14, Find the equation of the sphere which passes through each of the
following sets of four points:
M (1,0,00,(0,1,0,(0,0,1), (1,2, 1)
Gi) 0,0,0,(0,1,2),3,0,1), (-2, ~1,0)
(i} (1,0, - 1), (2, 1,0, (-1,2, D, @, -2, -2).

15. Find the centre and radius of the circumsphere of the tetrahedron with
vertices (0,0,0), (4,2,0),(-2,4,2), (2,4, 0.

16. Find the equation of the circumscribing sphere of the tetrahedron

formed by the coordinate planes and the plane x+y +z =p.
Tangent plane to a sphere.  Let the point P{x', 3/, ') lie on the sphere
X2+ 24284+ 2y + 2vp 4+ 2wz + d =0,

Then the centre C of the sphere is the point (—u, —v, —w), and as
CP i3 normal to the tangent plane at F, the direction ratios of the latter
e x'tury+vizitw,

Hence the equation of the tangent plane at P is

(x' +)(x—xN)+ O+ Wy -y )+ +wiz— 2" =0,
Le. xx'+yy+zz’tux+vytwz=x"+p2 42 ux' v +wz'. (i)
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But as P lies on the sphere,

X2+ 24 24 2ux’ + 2wy o+ 2wz’ + d =0,
or X4y it 2 ux vy twr' = —ux'— vy w2 —d.

.. Equation {i) can be written as
' +yy 2z +u(x+ X)) +¥(y +y) +w(z+z)+d=0.

The condition that the plane fx+my-+nz=p is & tangent plane to
the sphere
X2+ 224 Qux+ 2vy+ 2wz + d=0

is obtained by equating the perpendicular distance of the centre of the
sphere from the plane to the radius of the sphere.
The condition is found to be

(fu+mv+aw+ pf=(F+m*+nt)ul+ v+ wi—d).

Ex. 4. Find the equations of the tangent planes 1o the sphere
Xty dx+dp+2z42=0
which can be drawn throuph the x-axis.
Any plane passing through the x-axis has the equation
y+xz=0. . . . . ., . . . ()
As the centre C of the sphere is the point (1, -2, - 1), the length of the
perpendicular from C to the plane (i) is
-2-2
SV (ESUY
The radius of the sphere =+/¢124- 22+ 12-2) =2,
Hence the plane (i) is tangential to the sphere if
2+

=am

2 e (2+22<=4{1+15).
A= 0’ %
So the tangent planes are y=0, 3y+4z=0.

Ex. 5. Show that the plane x— 2y + 22 ==9 lourhes the sphere 2+ 2 + 27 =9
and find the coordinates of the point of contact.

The perpendicular from the centre (0, 0, 0) of the sphere on the plane is
of iength 3 units and is equal to the radius of the sphere.

Hence the plane touches the sphere.

Also the direction-cosines of this perpendictlar are 4 -4 £; so if
(x, », ) is the point of contact,

(x-03=0r-0)-%=(z~0)2=3; ie x=1,y=-2z=2
.. The point of contact has coordinates {1, - 2, 2),
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Ex, 6. A variable sphere is drawn fouching two given planes and passing
through a given point P, Prove that the sphere passes through the reflection
point of P in the plane which is the locus of the centre of the sphere.

Take the givén planes with ¢quations z= 4y, then the centre of the
variable sphere will lie in the plane z<=0.

Let the centre of the sphere be the point {«, 3, 0) and let P have coordinates
(a, b, ).

Then the radius of the sphere =length of perpendicular from (=, p, 03 to
the plane z+ my=0,

=mB{+/(1 + n®).
.. Eqguation of sphere is
(- af + (- B + 25 =pPEEN(1 + m)
and as it passes through P,
(@— o+ (b— B2+ & =mEP¥(1 + m).
This latter equation is also the condition that the sphere passes through
{a, b, — ¢), the reflection point of P in the plane z=0.

To find the length of the tangent lines from a given point to a sphere.
Let P(x,, ¥, z;) be the given point and C{—w, —v, —w) the centre of
the sphere

xt+ 224 Jux 4 2yy + 2wz + d=0,

Then the square of the length of a tangent line from P to the sphere
= CPt—(radius)®,
=@ ulR+(y F v+ +whiE -+ v wt—d),
= xlg +y1‘+ If + zuxl + zvy:[ + 2“1 + da

N.B, If this expression is negative, P lies inside the sphere.

Ex, 7. Find the length of the rangent lines front the point (4, - 2,3) to the
sphere 3%+ 124 29 - 3x+4y -8z +2=0,

g’l‘hge eaquation of the sphere must be written with unity coefficients of
X5 5 2%

ie. 22224 2y 424+ 1=0,
Then (tangent =43+ (- 2+ (3 - Hd)+ 2 - - 4D +1
=8,

.. Length of tangent =24/2,
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EXAMPLES I5b

In each of the examples I to 6, write down the equation of the tangent
plane to the given sphere at the point stated.

Lox®+y2+28=3, {1, -1, D). 2. 2%+ pE 4 2%=9,(-1,2,2.
3x7+)%428 =49, (6, -3, -2). 4 XPFyt+t-4x+29=0,(2,1, - 1)
$ X242+ 23 +dy-22-7T=0,(-1,0,3).

6. 2(x% + 1+ 2% - 8x+ 3y -22-6=0, (2,2, 0).

7.

Prove that the plane 2x - 3y + z =14 touches the sphete x® + y2+ 22 =14
and find the equation of the parailel tangent plane.

8. Show that the plane 2x + 2y — z =1 touches the sphere M{x2 + 2+ z%) =1
and find the coordinates of the point of contact.

9, For what values of pis the plane x + 2y - 2z =p tangential to the sphere
AP+ -2x+4z-4=07
10. Find the equations of the tangent planes to the sphere
254 p¥ 4 2% dx - 2y 22=0
which are parallel to the plane x + y+ 2=0.
11. In each of the following cases find the length of the tangents from the
point stated to the given sphere;
(D230, 2+y+2t=1; Giy (=1, -2, 1), X242+ 2% - dx =0
Gi (1,4, - 1), 22+ + 22-3x+y+52-1=0
Gv) (2,2,2), (2 + 2+ 2+ 6x -y +3z-4=0.

12. Determine whether the point (3, - I, -~ 2) lies inside or outside the
sphere 22+ 15+ - Tx+p-4z+1=0,

13, Find the locus of a point from which the tangents to the two spheres
X+ P78 1=0, x2+y2+ 22— 45 - y+z- 1 =0 are equal in length.

14, Prove that the plane 7x- 10y +4z-117=0 touches the sphere
X +p2422 - Ix+ 4y - 27-34=0 and find the coordinates of the point of
contact.

15, Find the zquations of the tangent planes to the sphere
xF4+z8-4x- 10y +9=0
which intersect in the x-axis.

16. Find the equations of the tangent planes to the sphere
4P+ 221 2 -4y 62-7T=0
which intersect in the line 6x— 3y —-23=0=3z+2.
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Plane section of a sphere. Without loss of generality the plane can
be taken as the coordinate plane z=0 and the sphere as

X+p0 420 2ux + vy + 2wz +d=0.

The common points of the plane and sphere lic on the curve defined
by the equations
z=0, x4+ y% 3+ 2ux 4+ 2uy+d=0,
These equations clearly represent a circle in the plane z=0, centre
—u, —v, 0}
¢ Hence a Llane section of a sphere is a circle whose centre is the foot
of the perpendicular from the centre of the sphere on the plane.

Common points of two spheres. Suppose the spheres
S, =x2 P4 2% 2u x - 2vy 2wz +d, =0
Sa=x2+ 32+ 22+ Qupx 4 2vay + 2wz +-dp =0,
meet in real points.
Then the equation L = 5; — S, =0, represents a plane passing through
the common points of §; and S,
Consequently as the common points of the spheres S, and S, are
also the common points of one of these spheres and the plane L, it
follows that the common points of the two spheres lie on a ¢ircle.

Equations of a circle. Since a circie is the curve of intersection of a
sphere and a plane, the most gencral form of its equations are

X3+ Y24 22+ 2ux - vy + 2wz £ d =0,
Ix-+-my+nz—p=0, $
If C is the centre {—u, —v, —w} of the r
sphere, N the centre of the circle, R the radius

of the sphere and r the radius of the circle,

r*=R:—CN? (Fig. 105),
d (ut+mv+nwtp)®
' Brmind Fia. 105.

The coordinates of N can be found from the intersection of the
normal CN and the plane.

=ut+ v WA

Ex, 8, Find the centre and radius of the circle passing through the points
(-1,0,0) (0, 2,03, (0,0, 3).

The equation of the plane containing the three points is
x+1 yz|=0; ie 6x-3p-2z+6=0.
1 20
1 023
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We now find the equation of the sphere passing through the three given
points and any other convenient point not coplasar with them; it this case,
the origin is a suitable fourth point.

The equation of the sphere passing through the peints (6, 0, 0), (- 1,0, 0),
©, 2,0, (0,0, 3) is found to be
x4+ x -2y - 3z=0,
The centre of this sphere is the point (-1, 1, 3) and its radius is v/2-

The centre of the circle is the foot of the perpendicular from C to the plane
6x—-3p-2z+6=0.

Length of this perpendicular =3-

In finding the equation of the perpendicular from C to the plane
6x - 3y -2z+ 6=0 it is important to note that

() the direction-cosines of the perpendicular from the origin to this plane
are -5 3, 4;
{ii) the point C is on the opposite side of the plane from the origin.

Hence the direction-cosines of the perpendicular from C to the plane are
$y - 3: — % and the equations of the perpendicular are

x+d y-t z2-%_ .
§ 3T 2

where r is measured from ¢ towards the plane.
Taking r=2» it follows that x — - i y=5%% 2 =135
a

So the centre of the circle is the point { - 33, 43, 1348).

Also (radius of circle)* =7 - (3P =328
lLe. radius of circle = /3%

Equation of a sphere passing through a given circle. Suppose the
circle has the equations

X4yt ux+ 2wy +2wzkd=0, . . . (D)
Ix+my+nz—p=0. . . . . . (i)

Then the equation
X2+ 20+ 2ux+2vy + 2wz +d - i{ix +my+ nz—p)=0 (i)

represents a sphere passing through the given circle, For ¢learly the
equation represents a sphere for ali values of the parameter > and any
values of x, y, z which simultaneously satisfy equations (i} and (i)
must also satisfy equation (iii).
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Ex. 9. A circle, cemtre (2, 3, 0) and radius 1, is drawn in the plane z=0.
Find the equation of the sphere which passes through this circle and through
the point (1, 1, 1).

The equation of the sphere, centre (2, 3, O radius 1, is

x-2%+(y-3P+22=1;
ie. X2y 22 - dx - Gy 4+ 12=0.
.. The equations of the circle can be written
A2+ 22 - 4x - 6p+ 12=20; z=0.
.. Any sphere passing through this circle has the equation
A4 yR4 2% dx - 6y +12+32=0,

As this passes through the point (1, 1, 1), &= -5.
Hence the equation of the required sphere is

X2yt 2t 4x— by - 52+ 12 =0,

System of spheres passing through the common points of two spheres,
Let the equations of the spheres be

Sl Ex2+y2 +22 +2“1x + 2V1y+ Zwlz +d1 =0,
Se=xE+ i+ 224 2ipx + 20,9 + 2wz + dp =0,
Then the equation L=5—-5,=0,

represents the plane passing through the common points of the two
spheres,
Now the equation S FAL=0

represents a sphere for all values of the parameter » and as it is satisfied
by values of x, y, z which simultaneously satisfy the equations §,=0,
L=0, it must be the equation of a sphere through the common points
of S; and L, that is, the common points of S; and S,.

Hence the equation of the system of spheres passing through the
common points of the spheres S, =0, S,=0 is

S+ aL=0,
where L=8S,-5,.
Alternatively the system can be represented by either of the equations
S, +2L=0,
or 5 +18,=0.
Special case. If 8y, S, touch each other at a point A4, then L=0 is
the equation of the common tangent plane at 4 and the equation
S,+1L=0
represents a system of spheres touching the given spheres at A.
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Ex. 10. Find the equation of the least sphere which passes through the
common points of the spheres X2+ y3+ 22— 8=0, s+ Y2+ 22 - 2x + 4y - 5z=0.
The equation of the plane of intersection of the two spheres is
2x-4y+ 5z-8=0.
Hence the equation of any sphere passing through the common points of
the two spheres can be written
X2zt B4 M2x -4y« 5z-8)=0.

The centre of this sphere is the point ( -, 2, - £2) and for the sphere of
least radius this centre must lie in the plane of intersection.

LA-N-HD)+H5(-50-8=0; 1= -i%
and the required sphere has the equation
4503+ 33 4 2% - 32x + 64y - 80z - 232=0.

Ex. 11. Find the equation of the sphere which (touches the sphere
12+ 32+ 28 =6 at the point (1,2, — 1) and passes through the point (3, -2, 2).

‘The tangent plane to the given sphere at the point (1,2, - 1) i5
X+2y-7=06,
so the equation of any sphere touching the given sphere at this point is
P46+ Mx+ 20 -2~ 6)=0.
This sphere passes through the point (3, -2, 2) if
11-92=0; ie a=%l
Hence the equation of the required sphere its
93 +)2+ 20+ 1lx + 22y~ 11z~ 1200,

EXAMPLES 13c

1. Find the equation of the sphere which passes through the circle
@+)8+28-4=0, x+y+z~1=0 and through the point 2,2,0)

2. Find the radius of the sphere which passes through the origin and
contains the circle x4+ )8+ 22 - 4x+1=0, p=1.

3. The centre of a circle lying in the plane z=0 is the point (2,3, 0) and
its radiug is unity. Find the centre of the sphere which passes through this
circle and the point (4, 3, 2).

4. Find the coordinates of the point in which the common plane of the
spheres xE+)2 +22+2x~4z-3=0, Byl 2®-2p+2z-7=0 meets the
axis of x. DProve that the tangents to the spheres from this point are equal
it length.

%, Show that the spheres

R+t 2x-4z—20=0, R*+yF+21-2x—2y-2=0
touch each other internally.  Find also the equation of the common tangent
piane and the coordinates of the point of contact.
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6. Show that the eguation of a sphere passing through the circle
2422 4x+62=0, y=1is of the form x¥+ 2+ 22— dx+62- 1 +2A(y - 1}=0.
Deduce the equation of the sphere of which the given circle is a great circle.

7. Find the equations of the spheres of radius 5 units which pass through
the circle @+ 32+ 2x -4y — 11=0, z=2,

8. Determine the equation of the sphere passing through the common
points of the spheres 2(x8+ )8+ 29 -9x=0, x*+ 32+ A -dx+y-3=0 and
also through the point (0, -1, 2).

9. Find the centre and radius of the sphere which has the circle
4324+ 28=9, x+2y - z=2 as a great circle.

10. Obtain the equation of the tangent plane to the sphere
xryPazt-dr-4=0
at the point (0, 2, 0), and hence obtain the equation of the sphere which
touches the given sphere at this point and passes through the origin.

11. Find the equations of the spheres which pass through the circle
X+ 42 4x+2y—z4+5=0, y~ z=0 and touch the plane z=0.

12. A sphere is drawn on the line A(1, 1, 1), B2, 3, 3) as diameter; find
the equations of the spheres of radius 2 units which touch this sphere at A4,

13, Find the equation of the sphere of minimum radius which can be
drawn through the common points of the spheres xB+ 334 22— 16=0,
2434224 4x+2y- 22=0. )

14. Find the centre of the circumncircle of the triangle with vertices (3, 0, 0),
0,2,0, 0,04

15. Find the equations of the spheres which pass through the circle
x2+28 - 2x+22-2=0, y=0 and touch the plane y - z=7.

16. Determine the centre and radius of the circle which is the section of
the sphere x®+ y® + z% =169 by the plane 2x+ 3+ 22 =15,

17. Obtain the coordinates of the centre of the circle which passes through
the points (0,0, 0), (3,0, - 1), (1,2, 0).
18. Show that the circles
x4y 420 -4-0,2x - y+2z=0;
2Oyt y-z-2=0,4x -2+ 2210
are sections of the same sphere and find the equation of this sphere.

MISCELLANEQUS EXAMPLES
1, Find the equation of the sphere which passes through the points
(os ]; 0)9 (09 0! l)('_z’ - 1; - l)’ (2> 2; 0)'
2. Two spheres have equations xP+)3+2%+6x~2r-22-15<0,
x®+ 38+ 22+ 2x - 6y + 6=0; show that one lies entirely inside the other.
3. Find the equation of the tangent plane at the origin to the sphere
X2+ 2+ 224 2ux + 2ey + 2wz =0,
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4, The plane 4x - y + z =3 is tangential to a sphere with centre (- 3,1, - 2).
Find the equation of the sphere and the coordinates of the point of contact.

5. Show that the sphere x® + 3%+ 22— 4x+ 3y - 7+ 4 =0 touches the x-axis
and find the coordinates of the point of contact.
6. Find the equations of the diameter of the sphere
Rty z2-4uetdy+2z-T=0
which passes through the origin and the coordinates of its extremities.

7. Find the equation of the sphere which has its centre at the poing
(8, 3, 2) and which touches the line (x+ 1)/2=(y - 12)/4 =z -#§.

8. The equations of the chord PQ of the sphere x%+ y! + 2% - 3x -y~ 8= 0
are (x+1)2 =y/-2=z- 1. Find the coordinates of the mid-point of PQ.

9. Show that the locus of a point from which equal tangents can be drawn
to each of the three spheres A%+t +28=1, &%+ ¥+ 224 2x -2y + 20 - 1 =0,
A48 422 x+4y - 62-2=0is the line (x— 1)2=(y-2)/5={z- 1)/3.

10. Find the equation of the sphere which touches the plane x+ y+ 2z =3
at the point (1, 1, 1) and passes through the point (3, 4, 2).

11. Find the areas of the circles in which the sphere

By -Ax-4y-22-4=0

meets the coordinate planes.

12. Find the centre and radius of the section of the sphere
x24+324 254+ 3x - 2y - 5=0 by the plane x -y +z+1=0.

13, Find the equations of the spheres which pass through the circle
X242+ 22 2x~4y=0, x+ 2y + 3z =8 and touch the plane 4x+ 3y =25,

14. Spheres are drawn to pass through the points (2,0, 0), (8, 0, 0) and to
touch the axes of y and z. Find the equations of these spheres.

15. Find the equation of the locus of a point which moves such that its
distances from the fixed points (- g, 0, 0), (a, 0, 0) are in the constant ratio
%: 1, where 2>1. Show that the locus is a sphere and find its centre and
radius.

16. Find the equation of the sphere which touches the coordinate planes
and the plane x + 2y + 2z - §=0 and is enclosed by these planes.

17, Find the equation of the sphere which has its centre in the positive
quadrant of the xy-plane and which cuts the planes x=0, y=0, z=0 in
circles of radii 3, 4, 5 units respectively.

18. Two spheres are said to cut orthogonally when the radii to one of their
common points are at right angles; prove that the spheres

X244zt -2+ 3y +z-2=0, x2+)y2+z-3x-2y~4z-0
have this property.

19, Find equations of the circumgcircle and the coordinates of the
circumcentre of the triangle with vertices (2,0,0), (0. —-2,0), (0,0, ).
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20. Find the radius of the sphere which has the circle x%+3%+22=9,
Xx-2y+2z=5 as a great circle.

21. Obtain the equation of the sphere which touches the sphere
AE+312+ 28425~ 6p+1=0 at the point (1,2, -2) and passes through the
origin.

22. Show that the circles

)R+ 2D - 3x+By-62=0,2x—y-3z-1=0;
X842y -4z-2-0, x—y-z-1=0
are sections of the same sphere and find the equation of this sphere.

23, Find the centres of the two spheres which touch the plane 3x+ 4z =47
at the point (5, 4, 8) and which also touch the sphere x*+ 3%+ 22 =1.

24. Find the equation of the sphere of minimum radius which passes
through the peints (1, 0, 0), (0, 1, 0}, (G, 0, 1).

25. A sphere is inscribed in the tetrahedron whose faces are the planes
x=0,y=0, z=0, 2x + 6y + 3z =14; find its centre and radius and write down
its equation.

26. Find the equation of the sphere with centre (5, — 2, 3) which touches
the line (x — I}/6 =(y+ 1)/2=(2-12)/~ 3. Find also the area of the circle of
intersection of this sphere and the plane passing through the given line and
the point (0, - 3, 0).

27, Determine the arez of the circle of intersection of the spheres
X yi ¥ e 3y 2-2=0, x84+ 3%+ 22~ 3x - 2y - 4z=0.

28. Prove that the spheres x2+)%+2%+2ux+2vy+2wz+d,=0,
X4 32+ 224 Qapx + 2vpy + Twyz + dy= 0 cut orthogonally if
2paglig + vyvg+ W) =dy + ds,
29, Find the equations of the tangent planes to the sphere
x4 PR 2o Tt Ay — 62+ 10=0
3x+1 3y-10 =

=_- Find also the acute angle

which intersect in the line 3 % =3

between these two planes.

3. 00X, OF, OZ are three mutually perpendicular axes. Through a
point P three mutually perpendicular lines are drawn, one passing through a
fixed point € on OZ while the others intersect OX, Q ¥ respectively. Show
that the locus of P is a sphere with centre C.

31. Find the equation of the circumseribing sphere of the tetrahedron
whose faces are the planes x=0=y =2z, x+2y+ 3z =4.

32. Show that, in general, two spheres can be drawn to contain a given
gircle and touch a given plane.




CHAPTER. XVI

PARTIAL DIFFERENTIATION

Functions of more than one variable. Consideration will now be given
to the process of differentiation when applied to functions of more
than one variable.

Suppose, for example, that f{x, y) is a fanction of the variables x, y

and write u=f{x, y).

Now let x increase by a small amount » while y remains unchanged
in value, then the increase in

=f(x+h’ )’) _ﬂx! y)
So the average rate of increase of « with respect to x

S .{!.’_J}J)_—.M) :

The limit of f:(xi‘:'}?-_-—fkf-)—') as h— 0, if it exists, is called the

partial differential coefficient or partial derivative of u with respect 10 x
du of

a}! a—xt Uz ﬂrfg.
fx, y+ kgfﬁ".‘;l)

and is denoted by one of the symbols

Similarly, if the iimit lim
k=

derivative of u with respect to y.

These definitions, involving the constancy of one variable whilst a
change is taking place in the other, presuppose the independence of
the variables x, y.

Moreover, the definitions can readily be extended to a function of
any number of independent variables.

exists, it is the partial

1f w=f{xp Xy X3 « . . Xa),
then ?_u_ = lim St X xy - - xﬂ)_:ﬂxl! Xgy Xgr « « » xn),
Xy p-s 1
assuming that the limit exists,

and similarly for ou, ou Bu,
y Oxy dxg ~ 1" Bxp
1t is clear that the process of the partial differentiation of a function
f(x,, X5, . . . Xx) with respect to one of the variables, say x,, is identical
with that of the ordinary differentiation of the same function in which
K1)
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only x, is treated as variable and x,, X, . .. X are treated as
constants.
E.g. if u=2x%"%
at .
x = 3x%)%, treating y as a constant,
ou .
and 5’ = 2x3%, treating x as a constant.

It follows further that all the rules for the differentiation of a function
of one variable hold good in partial differentiation,
E.g. using the function of a function rule,

if u=log (x*+y*+2%),
R PN
Ex“9+ﬁ+223§(x +y +zz)_x‘+y3+z"

. w__ 29 tu_ 22
Slrmlar]y, E_-mg‘_r;;; 5‘% xs+y:+zz

fu ou o4 X
ind —» -~ N u= ¥ -} =sin™1 =,
Ex. 1. Find o 2y i () u=xye™ ; (i) u=sin 3 [y]>1x[.

(i) Using the product rule,
St

) &
ax=e'” é;c(xy)+xy - o

ax
=™ y+ xy . &', treating y as a constant,
=ye™¥(1 + xy).

Similarly, z: —xe%¥(1 + xp).

(ii) Using the function of a function rule,
ou 1 e {x 1 1
SN0 RN E6) &
» ¥
— _.l P——
VoA
X

Similarly, ‘;—;=W ( - ;z) TR
Y

Ex. 2, If u=¢(y+ax)+§y-ax), where ¢ is any differentiable function,
prove that uy = 0 when x=10.

To obtain the partial derivative of ¢{y+ ax) with respect to x, think of
¥+ ax as a single variable, say v.



FUNCTION OF TWO VARIABLES 319
Then by the function of a function rule,

2 gpran=2 4y I 0+ an-a o)
. When x=0, ‘%#y-l- ax) =od’(»).
Also % My — ax) = — ad’(w), where w=y - ax.

.. Whenx=0, c% My - ax) = — ad'(¥).
Hence M)z = o =" (¥) - ad’(3) =0.

Function of fwo variables. Geomeirical inferpretation of partial
derivatives. Consider the surface with

. 2
equation s

z=fx, y).

Let PORS be the element of this
surface bounded by the planes

SJ'

x=%, Xx=xth, y=y, y=ytk S
where h, & are small {Fig. 106).

The coordinates of P, @, R, S are , Q’ R
Tespectively Fio. 106,

{xb yl.,ﬂxh yl)}’ {xl +k; ylsﬂxl"l' k’ J"l)}’ {xl +h: h + kl:f(xl"'ha N + k)}:
{x0 1+, S, 1 +k)}

Now the vaiue ol‘ = at P=Uim fixithy ‘) —fC 1), ; but from the

A0
: Jx jrh_)’l) —fxuy) Q@ PP _ QL
dlagram, T T Pt ¥ PL
= gradient of chord PQ.

In the limit as Q> Porh—0,
the gradient of chord PQ ~» the gradient of the curve PQ at P.

Bence the value of ;% at P, that is when x=x;, y=1¥,,

=the gradient at P of the curve of intersection of the surface
z=fx, ¥) and the plane y=y,.

Similarly, (% ) gives the gradient at P of the curve

LT
z=fix, y), x=%.
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Ex. 3. At the point (1, 2, 2} on the surface z =x%, find the gradients of the
curves of intersection of the surfoce and the planes y = 2 x=1.

The required gradlents are given by the values of a—, g—y when x=1, y=2,

As ,f = 2xy; - =x% the gradients are 4 and 1 respectively.

Higher partwl derivatives. If # is a function of x, y, z, . . . the
. e . &
partial derivatives ?_u, ou, ou, . . will also be functions of x, y, z, . .
éx gy dz
and consequently can be differentiated partially with respect to
X, ¥, %, . .. The second order derivatives obtained are denoted as

follows:
d féu\ &u . g {éu\ u )
'a(ax) xp OF e a}(‘a})‘m Of Uyr;
o féu & . @ fiuN ot
() o o i 5 (5)50 or um
There is a similar netation for partial derivatives of third and higher
orders.

&u
Ex. 4. [fu=x*logy, verify that — axa “ayex
o
é
We have = =2xlogy; f.x
&x oy ¥
oy g fx2 2 o
LB B 2x B 0y 2
Fu a
Le x By ¢
dx &y dyéx

Order of partial differentiation. The result of example 4 above
illustrates a general principle that the order in which successive partial
differentiations are carried out is immaterial in the final result for a
wide range of functions.

. # (o) ooy @ (o)
& ix2\oy/ " oy léxt a.f‘aj; ox
&y o2
Ex. 5. If u =log (x3+ 2, find the value :;s_,i"'Jl:2 P S 2xy g:t—a}+y2 3):.

o x| dtw 2y

ax T B X p

Pu_2x+y0)-2d2x) 20°2-xY w4y

ax® G2 E (Y Ex by (i

&y 20+ - 2029y 2(x2-- »)

P G T

iy 2y Ay 27:3(3-"l x)— BxByP4 2pR(x? - Jr")

333+2xy 5;5}4-'}; P DA (x? + o2 T
2xh 2 )

ey

.- xz

=-2
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EXAMPLES l6a

Find & and < in the following cases:
ax By N

1. z =xby, 2, 2=y 3 z=xsiny.
z=ytlog x. 5. z=x%+yx. 6. z=cos xy.
7. 2=V 8. z=tan"1% 9. z=xy tan xy.
10, z=2.. 1. z=(x2+ ;*y' 12, z=x*, x>0.

x+y
13. Find the gradient of the curve of intersection of the surface z —=xy*® and
the plane y =2 at the point (1, 2, 4).
14. Find the gradient of the curve z=sin xy, x =1 at the point where

1
Y=y
15, If u=log {(x®+ IX*+ 1}}, prove that u,, u,,, when x =y.
16. Given that z =x%?, find the values of oy when x=1,y=2.
. Find Bz 2 Pz Pz, in each of the t‘o]lowm cases!
ax® ax dy dyox 8P ks £
(D z=2x%% (i) z=cos (x¥); (i) z-—log (xZ+3%);  (iv) z=g"®"r,
#r
18. For the following functions verify that ;;ay EEY :
() z=log(x+»); (i) z=sin1 i; (iii) gw,—:_.}y; p (V) z=W T,

3’& d’u Ay 2
19. If u=10g (x*+ y*+ 2%, verify that —-5 Rt A A

20, Find the equations of the tangent to thc circle x*+y*+ 28 =4, x=1 at
the point (1, 4/2, 1). e
21. Find the value of a7y at the point (£, 1, - 1) on the surface x®*z3 =1,
Gz 0z ox oy oy ox
22. If xyz =1, find the values of o ay oz 72 ix Fh
or _x ér_y
23, If 2=+ 3% show that - R
24. Verify that, when y=x3+ )3 + Jxyz,

25. If u =ﬁ}-’—’- prove the results:
X+ y

—u+ 85+z E“--3u
¥ ox yay ax )

u 8y & o &l
(|}x—4 yéj,_"' (n)x2 +2er',a ) a-ygm().

26, Prove that the equation a}, 3 y,=-0 is satisfied by the function
v=tan~! y/fx-

27. If z is a function of x and p, show that the general solution of the
differential equation gi =x+yisz=kx*+xy+My), where X3} is an
arbitrary function of y.
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28, Solve the following differential equations where in each case z is a
function of x and y:

. o BZ oo 02 L N

(i) a-—r—O, (ii) {3}'._0' (iiid --——2x, (iv) -——xsmy,

{v) g_iz(); (vi) g%=sin x; {vn) ={}; (vul) — —ny
29, 1 tan 0=", find % and ad
x ax ay

. ¢ é
30. If log z=sin g' prove that x a—z+y a_z=°'

31. Given that x%+ %+ z% =1, prove that y'“' == 1L

32. Given that xp*z¥ =constant, show that —- dx O 8z _ 1.

33, If f(x, y} is a polynomial of degree # mlx, ¥, prove that ixay ayox

MMM r=+/{x%+ )2+ 2%, prove that aig =;—§ and by writing down the

corresponding results for éf— nd a—g— deduce 6*r+6_’r+a_2r —2-
i g results for oo5 educe ax= 5t iR,

Small changes. It is already known that if' ¥ is a function of a
variable x, then the increase 8u in w arising from a small increase 8x
in x is given approximately by

i
L] &x ix.

This result will now be extended to functions of more than one variable,

Suppose that u=f(x, y),
and that x, p increase by small amounts 8x, 8p.

Then u+8u=f{x+3x, p+8y).

3u=flx+ix, y+ 39— fix, »),
= flx+8x, y+ 30}~ flx, y +89) -+ flx, py+3)—f(x, ).

But h_’of(x Fax, y +-8§2 ﬂx’y+ajf)=-f};(x,y+8y)

and hence
Jix+8x, y+ 3y —Rx, y+ 8yy=filx, ¥+ 81) Bx=f{x, ») 8x.
Similarly, Jx, y+ 30 —fx, ¥)=f{x, ») 8y.
. Su=fix, y) 6x +f,(x, y) &y.

or Sn-—-— 5x+ 5y Sy,

where the partial derivatives have values arising from the original values
of x, ¥
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Extending this result,

if =%, Xg, Xgy - « - Xnh
__tu du du du
Bu—-a}-; 8x1+ E‘; 8x=+ axa BXet ... T X qu.

Ex, 6. If z=x%", find the approximate percentage error in z arising from
percentage errors of 0-1 and (-2 in x, y respectively.

In finding percentage errors it is convenient, if possible, to take logarithms
before differentiation.
We have logz=3logx+2logy.
Writing log 7z =4,
w=3logx+2logy

3, 8
sodn= 3% 2
* ¥

Bat By = s_z,
F4
0 8_2 e 3 8j+ 2 @’.
z x ¥
iz
1e. 100 7 = 3(-13+ 22y =07,

Hence the percentage error in z is approximately 0-7.

Ex. 7. ABC iz an acute-angled triangle with fixed base BC. If §b, 3¢, 8A,
3B are small increments in b, ¢, A, B respectively when the vertex A is given a
small displacement 3x parallel to BC, prove (i) c8b+bdc+ becot A84=0;
(i) c3B + sin B8x=0.

(i) The arca A of triangle ABC will remain constant; i.e. 3A =0,

Now A =1bcsin A,
oo BA==d{e sin A5b+ b sin 4Sc+ be cos A5A),
Le. 0==r sin 485+ b sin A3¢+ be cos 434
or, 835+ ble + be cot ABA=0,

(i) 1f D is the foot of the altitude 4D (Fig. 107), the increment in 8D is 8x,
and consequently B can be taken as x.,

But AD=BDtan B

i.e. constant=xtan 8. A
". O=tan B3x -+ x sec? B3B ]

or 0=-sin Bcos Béx+x38. 1
But x=ccos B, I
=%

.. 0=sin Bcos Bdx+ccos B&B, &~
ie. O==sin B 38x+cBh. FiG. 107.
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EXAMPLES 16b

In each of the following cases write down the approximate increase in z
due to smail increases A, ¥ in x and y:

1. z=x3, 2 z=xy% 3 z-ﬁ-
4. r=xsiny, 5 z=log (x*+)®). 6. z=&1,
T. 2=(x+y" 8. z=tan™! (xy).

9. If u=x%y4, find an approximate value for & when x =2-001, p =0-999,

10. Find an expression for the approximate increase in the volume Fof a
circular cone due to increases &r, 3k in the base radins r and height 4.

11. Using the formula A=4be sin A, express 3A in terms of 85, &c, $4 and
deduce an approximate value for A when b=5-02 cm, ¢=39% cm, 4=130°

12. If w=x™y™, show that Bu =m 2x +n 3.

U x ¥

13, Find the approximate value for the percentage increase in the volume
of a circular cylinder when the radius increases by 0-5% and the height
decreases by 0-2%7,

14. If z=x*" find the percentage increase in z due to percentage increases
of 0-5, 0-3 in x, y respectively,

15, Obtain approximate values for: (i) sin 30° 1’; {if} 1/{(3-001)2 + (4-003)2};
(iii) 2bc cos A when b =501, ¢=1-98, 4:=60°2".

16. The measured lengths 5 cm, 13 cm respectively of the base radius and
slant height of a right circular cone are liable to maximum errors of -1 cm.
Estimate the maximum error in the ¢calculated volume.

17. The area A of a triangle is given in terms of b, ¢, A. Prove that
8;3 8:-1— EC+ cot A 84.

18. The formula c*=a®+b%-2abcos C is used to calculate ¢ with
a=2-5cm, b=4 cm, ¢e=27°. If Cis correct but 4, b are each in error by 29,
find the approximate percentage error in ¢.

19. X 1=k <5~ 4
in £ due to increases 3r, 80 in », 0 is approximately 100(tan 0 80 + 2 3¢/r).

20. A loaded beam with dimensions J, b, 1 is suppoited at the ends; the

where X is a constant, prove that the percentage decrease

3
sag s at the mid-point is given by s=%n where & is a constant,

If there are errors 3/, 8&, 5¢ in the valuwes of /, b, r respectively, find the
approximate error in the calculated value of 5.
21. The area A of a tr:ang]c ABCis gnven in terms of ¢, 4, 8; prove the

results aA
aA =38 Fr =3, GA3B 2sinc

Show also that the error in A due to small errors «, § in A, B respectively

1 &A . sm B sm A
is approximately = 2 A 2B sin C sm B gl
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Differentials. 1f i is a Tunction of x, then with the usual notation,

du .
du= 33: 3x. . . . B . . . (l_}

Differentials du, dx arc defined as quantities, either finite or
infinitesimally small, whose ratio is exactly equal to the differential

coefficient % and instead of the approximate equation (i) we have

the exact result
di
du= di dx.
In the case where u is & function of two variables x, y,
&N o
Bu== Bx 3x + % 3y.
Differentials du, dv, dy are defined by the exact relationship

ot ou
du= 7x dx + 3 dy.

Generally, if u is a function of variables x;, x5, . . . X,
ou 7] 2u
du=_ —dx;+ —dx,+ ... + .~ d%,.
éx, ' ox, ° X ¢

Ex. 8. In triangle ABC if a, b, ¢ vary and R, the circumradius, is constant,
da db de cosA éa_ cos A

] .. Ga
prove (i) cosa” CES—B-!- o_cs_C=0 antd deduce (i) b TcosB e cosC

(i) As a=2Rsin A and R is constant,
. _1 da
da=2Rcos AdA; ie. dA “oReos A

. 1 dh b 4
Slmllal']y, dB = fk C;)_S_B‘ dC = ZR COS-C
But A+B+C=m,

SodA +dB+dC=0.

Hence da b de =0.

e — + - [
cos A cos B+ cos C
(1i) Asa, b, ¢ vary in such a way that R is constant, @ may be regarded as
a function of b and c.

gy g B
. da—abdb+acdc.

But from (i) above, da=-— cos A, _cosd

cos B cos C
Ga_ _cosA 2a_ cosA
T cos B éc  cosC

de.
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Total differential coefficient. Suppose that « is a function of x and y
where x, y are each functions of ¢; so uis in fact a function of the single
variable ¢,

The methods developed for dealing with a function of two variables

can be applied to give a rule for obtaining the differential coefficient %‘:

For we have Buﬁgf x+ a; By.

Dividing throughout by 3¢ and proceeding to the limit as 8¢ —- 0, it
follows that

du_ oudx L m éndy

di fxdt oydt

This result can be extended to the case where u is a function of

@)

Xy, Xg, . . . X, Where Xy, X5, « . . Xy are each functions of ¢, to give
du  éu dx, Bu dx, on dx., "
— =t i
dt ox, at ' ox, dt + Zxn dt (i

Ex.9. ffi =xt 4+ y2 where x =(1 - )/(L + ), y =2 /(1 + %), prove rhar‘;—‘:- 0.

dy dudx ou dy
We have &= de " ay dt’

2(14’)
=2 (i+r")2 +2 (H-t’)g

Important special cases
(@) u=F(x, ¥), where y is a function of x.
Replacing { by x in formula (i),
du_2ydx  Oudy
dx  ixdx dydx
' du_of  of dy
i.e. ax ox ayax - (iii)
(5) 0=f(x, ¥) or y an implicit function of x.

Using the result (iii) with u= g-’-‘ —0, we have

of  of dy
0_3x+3ydx
Le. dy_ gt @)

dx  #xf oy’
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This latter result is useful in the differentiation of implicit functions.
E.g. if x*sin p+ycosx=0,
dy _ _3xisiny—ysinx
x x3cos p+cos X

1t is instructive to use the resuits {iii) and (iv) to obtain an expression

for g in terms of partial derivatives when f{x, y)=0.
Write g‘g=p; §£=q; %ﬁ=r; efgy-—s; %;r
Then B__r _é,
%0 g 5) (- ager )/“

Now p is a function of x and y, where y is a function of x, so using
result (iif),
dp _ P, op a’y

de éx eydx
—r+s( q) (ar—ps)la.

Similarly, - A o gg (45— P)ig-

fff_._.{ —glgr— ps)+ plgs — p}ia®,
=(2pgs—p*t —q¢*rYig>.

EY _ dy Bx . dy b
Ex. 10, If x ,’a’iy‘u’b“—l,prove(r‘}dx e (1] ey
Wntmgf(.\, )‘—az z: 1; thcnpz%;: q=%{-
Ly e Bx
“dx g aY
Also r=522; 5=0: r:%.
dYy _2pgs-pt-g'r
a T
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Ex. 11. If f(p, ¢, v}=0, prove that

(2
dat ]y const. dv » const. dp /1 cous:. :

We have O=fudp+fidt+f, dv.
So when v is constant, dv=0 and

(&), ok

_ dt 5 dv £
Similarly, m) e () = 7P,
rary (dl’ P oronst. i dp /¢ conet. S

and hence by multiplication the required result foliows.

. dv _fi+fig:
Ex. 12. Given y =f(x, ), z =g(x, ¥), prove r}mf = f,g,..
We have dy=f dx-- £, dz,
ez —g. dx -+ g, dy.
Lody = fedn flgs dx o+ gy dy),
el - ,gg) =dx(f; + fogz).
d)" .ﬂ-"'fzgr

lLe. A
dx f&"y

Total partial derivative. Suppose u=f(x, ¥), where x, y are each

functions of the variables %, »,

Let € increase by 8 while % remains constant and let 8x, 3y be the
corresponding increases in x, y.

oo,
Then Sy~ r 3x + B:V 8y,
du _ Eudx  &udy
50 8T Ex e
3 dx ©x 8y ]
As B0, o G g
A AN A A

, Gn_tuix udy
" dE ex OE by €€
u_fméx  fu oy,

and simiiarly, aﬁ ™ 6,1 (;y 3"]

Generally, if u=f{x;, Xa . . . X5)
where x), x;, . . . X, are each functions of &;,5,, . . .,
o ox, ou ox, o ox
then T, o OB x0T oxa O
u__ou ixy, o éx, . Su oxn

OBy Ox 08 X OBy 7 ke OBy
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i on
Ex. 13, If u=f(x, y), where x=rcos 8, y= rsin 0, express % 3y in terms
f o 4, ou

of .8 ar 20

du Budx Buld
We have fu_ouox CuIY,

Er oxér 8yor
on_ fw Ex o dy
and B~ 2x 90 ay 20

& a2 . X . d
But éf-scosﬂ: -bi=smﬁ; X —psin®; Y e rcos 6.

0 L
6u
osﬂ—--bsme—:
Er
cu au
o reinh .
% rsin Bx+r cos 6 3y
. . du du .
Solving these equations for g 5;_ » gives
ou_  olu_sinble Du_o 0u cosO
ix o r & ar r 0
du u ou
Ex.14. Nu=flx-y, y- - X}, prove rhar + 6}+ éz-—O.
Let p=x-y, g=y-2, r=z-1Xx
then u=f(p,q,r)

‘u_ fudp auaq+?uar
‘Bx fpéx Téqox arox

=-35(n+5q(0>+5;(-1),

au_au
ép ér
&u aa du O du o

Similarly oy ap AN aq+ o
. ou fu + u_
' ax 6‘y Bz
Homogeneous functions

Definition. A homogeneous function of the nth degree in the
variables x, y, z is one which can be written in the form x"F( )

Eg 3+ -+ —3xpz =x‘{l + (i)’J’ (§)3"3(£)(§)}

is a homogeneous function of degres three,
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Euler’s theorem
If wis a homogeneous fanction of degree n in x, v, z then

du _dw _du_
X oxTY oy T2 =

For y=1n F(X, E),
X X
=x® F(, 1), where § =¥ o=

z.
X
. 3_u=nxﬂ—1F+xn{aF3£ oF &q}

) ZE dx 373
oF ¥ z
el (<) (-A)}
Le. x%;ﬁ"qu_ﬂ-l{y i‘f‘+ gf}
Ju dF &  8F oy f’f(!).
Also - xﬂ{ag dy+3r;3y} o 2F(1
o éF
Le. y8;=xn—1y_gg_
Similarly,
Zau‘—‘x"’1z_a_}_:‘,
B9
and hence

g“+y gu+z au-—nxﬂ F=nu.

This result can be expressed symbolically in the form

? 8 8
(x ety a—y—l—z a—z)u-—nu.

B B  Bu

- 3 — — ——

Ex, 15, [fu=x*+y*+2%- 3%z, emfuarexax+y +7
As i is homogencous of degree 3in x, y, z,

tu ou _Ou
XEE+)?§}+ZE;-3H.
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+y

X du  buw
—tan- 2, b .
Ex. 16. {f u=tan prove that x —+y 2-=5sI 2u

We have

+ . .
tan u=x3 ya » & homogeneous function of degree 2 in x, ¥.

. writing tan w=2,

@z &z
X ax +y a—y =2z
oz i &z ou
t = o kg bkt
Bu = sect i P and o i 2

&u du .
o u g - —sin 24,
le xax+yay 2 sin & €08 4=5in 2u

EXAMPLES 16

1. In triangle ABC, show that d4+dB+dC=0.

2, If 29 =x*+)#, show that zdz=xdx+ ydy.
dx dy dz

. du
= xPylz’ e N 4
3, Given that i =xPyz", prove that v px+qy+rz

4. If x=r cos®, y—rsin 0, express dx, dy in terms of dr, d6 and deduce
that: (i) &3 +dyE=dri+r?d6® (i) xdy— ydx=rdb,

&, The volume of a circular cylinder radius , height A is . Express d¥
in terms of dr, dh.

6. The area of an cllipse of semi-axcs a, b is 4; prove that “—:Jf + ‘%’-

7. If u =@+ + % show that d—:=xdx+ydy+ zdz.

8, Express A, the area of triangle ABC, as a function of a, B, C and

dA _do B bdC
deduce that A= ;%asnB asnC

9, With the usval notation for a triangle 4BC prove that
adan(bvcoosz!)db+(c—bcosA)dc+bcsinA'dA.
Deduce that da=cos C db+cos Bdc+csin BdA,

10. Find dy in the following cases:

dx
(i) X+ —axHt=0; (i) Xy +yPx=1; Gif) sin xy=x;
(V) a3+ )=, (v) x®—2xy+2y-3x+2y-1=0.

dty At
-gh =y __ma.
1L If x® + )5 = a5, show that ne e
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12. Show that the equation of the tangent to the curve f(x, ¥)=0 at the
point (xy, y) is (x — x;) ;—x +{r-¥) f{ =1{), the values of the partial derivatives
being those for the point (x,, ¥;).

13. Find the equation of the tangent at the point (1, 1) to the curve
Xy ayt=12,

14. For the corve 33 =a%2a— x), find the points at which: {i) the tangent
Is parallel to the x-axis; (ii) the tangent is parallel to the y-axis.

15. If in a triangle ABC, «, & are constant, show that

acos BdB—=bcos A dA
and deduce that ¢ &4 = — gcos BdC.
16. If f(x, y, z)=constant, prove that £ dx+f, dv+ £, dz=

17, Perform the following differentiations if x, y are independent and z is
a function of x, y:

L @ . . oy & azy
0 a—(xmnxy), (“)5(”67)’
... 8 feDsx iz a eVfx ez
a2 (5% ) @ (=05 ) (o)

18 If u—fE, ), where E=x+y, n=x-y, write down expressions for

Gt and ethat—{f—! au+§'_u) u_ l(du 6‘u)
2’ & prov 2 o]t an 2\ox oy

19. Find jz in terms of y and z from the equations 3 sin x +sin y =2,

3cosxicosz=2
20, If «# =H{x, y), where f(x, ¥) =0, show that
du_1 |28 o
dx 8f| ix ey
& of afi
Léx ay
. i u=f(p,q,r), where p=x2- % g=3% - 2% r=12" - x% prove that
1ou léu 1éu

+- o ={
xox” yéy zéz

Gt du fu, .
22, Find the value of x © .- +y —+z-- in each of the following cases:
éx &y &z

()22 =g (i) 2242+ 2% =08 (i) 248+ 2% =gt
23. i V=f(u, v), where u=x%+ %, v=2xy, show that
V_ 8V _aea au Y
ax = oWV
24, If V¥ is a function of r, 8, simplify:
gV sinbév sinb & 2V sin0éy
o i) = - 5] oos

. ] st eV
(i) cosﬁa (co B——--—— = o T a8
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25, Show that the function w={x - v)(log x-logy) is homogeneous of
degree one and by finding the vahee of x + ¥ gy verify Euler’s theorem.
26, fE=x+p, n=4/(xy)and zis a funcuon of x and y, prove that
x oz " 2z fz N Bz
ix y?y"_j L
27. If Pdx+ Qdy is the differential of some function « of x and y. prove
’\P Q
that ; hence solve the equations:
&y ax'
() 0=(3x%7+ 2x3Skdx + (2% + 3x%yNdy;

(i) 0=siny+xcmyg_—};-

28. If u is a function of x, y, where x=rcos8, y=rsind, establish the

results e cos @ o _sinf 2 o nd a+c95—q—a- u
ax PR ] L B . r @)

e 2 sin® 2\/fa
By writing 5‘; in the form (cos & é!_'_su_:__ aé)(az) express it in terms

- . &
of r, 8 and by similarly expressing 6;; prove the result

8iq+ai¢_&ﬁ(+!8u 1 &%
axt @t A ror T2

MISCELLANEOUS EXAMPLES
6;:

= -1 2 — -
1. If 4 =sin~! (x + 3}, prove that B ry
2, If u=xy{(x+)) verify:

. tu du . Hy R Ay
() x -~—+y B—y—u, {if) x‘?;,+2xy ?—x—a'—y*‘}’l 37’3_0
3. Ifz-j‘(y): prove that x P—i—y %z _
X &y

4, Verify that u—f(x)+g()a, where f, g are arbitrary functions, is a

solution of the equation —i =0.
ox &y a’-u Bzu &y

5, If u=ax®+ by +ez?+2fyz + 2gzx + 2hxy and —— P ay= e ——=0, prove
that a+b+ec=0.

6. Find the value of E?; (xe? + ye*) when x=0, y=1.

1. If u=dalx - y)+2b(x + y) +abz + ¢, where o, b, ¢ are constants, show

;1 ou 8::
wa (2] - (5) -+
Su

o
8. Given that ¥ —&{y + ax) +(y — ax), prove that ax';~a‘ s
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9. If &*+e¥=2xy, find the value of %
By F

xy
10, If o=
By ey that sme = ey

22
11, If p=sin2 > ~=)—’—2’ show that x —+y ~~~—0

12, Visa functlon of r and 4 given by thc formula V==r2h. Prove that

(l)r +2k—~~—4V {ii) d'i'_z‘f‘f Eh

g D .
13. Find o 7z ifxt+y8+24=1.

14, IF ax?+ 2hxy + by®+ 2gx + 2y ¢ -0, prove that: (i) g{ _ax+thy+g

hx+by+f’
(i)d’y abe + 2fph — af? - bg® - eh®
dx® (hy+ by fF

15, Find the radius of curvature of the curve x%y =x2+)* at the point
(x, »).

—einl XYY fu 0 _
16, If u =sin prove that x it 2y =4 tan u.

VX+yy
17. Verify the result Pu _ Pu when: (i) w =log {x tan™1 (x2+»9)};
R y Ix oy 3y ox n: (1) w=logi{x tan™! (x*+y9};
{m u=x*
. e m;& 1 &% ; .
8. Prove that the equation Git e T s 0 is satisfied by

é={Ar"*+ Br ") cos nb,

19. If u=fix, y, z). where x=gr{p, y=rplg, z=pg/r, prove that
éu @+ &u xé’-_u+ 8u+ an
P Yo T e ey T

20. Find an expression for % if y log cos x=xlog sin .

a
2. I 2®+y =z show that =%, .Y and deduce the result

iz . aiz 1 8x 7 8y =z
ax2 @t z
22. The area of a triangle 48C is calcolated from values of ¢, B, C. 1f

there is a small error £° in the value of B and the other measurements are
accurate, prove that the resulting error in the area is approximately wc®=/360.

23, If r= v/(x%+ 4+ %, prove that & (1)+ 6::,,(‘)+ z (})=o.
24, Fmdgandglfx"-#f—ﬁ’xy— .

25, Iff(xy J’) 0 and g(x, 2’) 0 prove that 22 d}' ;:‘js
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Bz _x-yP
axdy x5+

27. Prove that, if the sides a, b, ¢ of a triangle ABC receive equai small
increments x, the increments in the angles 4, B, C are given by

26. If z=xtan™! i— y tan™? ':_ show that

84 #J-E? {1 - cos B-cos ) and similar expressions, where A is the area of

the triangle.

3 3 3 b
28. If el + Y - 1, find the values of oz and ,r—x—-
a b c ox ay &z

20 If z is a function of x and y, where x=&n, y=1fq and if
dz Bz oz oz
iV, T4 Y ) Yl - Wy = PR SR 1 S
2xy 614 21-yH ay+x3yz 0, prove that %y 7 + 221 - ¥ +Elpz=0)

30. Given that x=u+e*cosu, y=v+e "sinmg, where n, v are

. ou . &
independent variables, prove that a—: is not equal to 1 / EE' Prove also that
eu oy
ix oy

31, The length of the hypotenuse of a right-angled triangle is calculated
from the lengths of the other two sides; the latter are measured as 8 and 15 cm
with a possible etror of 0-1 ¢m in each. Find the maximum possible error
in the calculated length of the hypotenuse.

32, If sin® x + sin? y=2 cos x ¢0s y, show that d—% = — 5ih X COSEC J.

d

33, The radius B of the circumcircle of a triangle ABC is constant and
keeping the vertices B, C fixed, the angle B is increased by a small amount
e minutes. Show that the resulting percentage increase in the area of the
triangle is approximately xR(e2 - b¥e/54abe.

34, It u=flax+ Zhxy+ &%), v=glax? + 2hxy+ by*), prove that
o,y _ (o
ay Hox) ix uﬂy ’

35, Show that the function V= ]-, where = x*+ 3"+ z%, is a solution of

s
the equation %;]:+ éi::-i- (’ﬂf; 0. If z=r cos 8, show that V= :2 cos i isalso

. & art
a solution.

36, If z is an arbiteary function of (x + ay), ptove that Z—;‘a %Z:'
37 I z=fix+ i)+ F(x - iy), where f=+/ - 1, prove that 324—3—22—0
. X+ iy X —iy), Cre | » P papec ) ay_g_-

38. If ¥={1-2xy+ 5%, prove that;

oV L ey iy 2 oV 2 [ a8Vl _
M x- ya};-yV. (i) a&:{{l xs)ax}iay{y 2y =0
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39. The vertex A of a wriangle ABC is displaced a small distance parallet
to BC while B, C remain fixed. With the usual notation, prove the
approximate results:

(i) cos Cdb+cos Bdc=csin B8B+bsin C&C;
(i) eBh+b3c+bccot A84A=10.

dx\2d% dyt_a‘fx_o
dyl dx® axdt

41. Express the area A of a triangle ABC as a function of a, b, c and prove
that ¢\ = R{cos 4 da+ cos B db - cos C dc), where R is the circumradius,

40. Tt f{x, y}=0, prove that(

42. If the function g(u, v) is transformed by the substitutions mrcos §=1,
tan 6-=r into the function f{r, 6) prove:
& )
W% g i
cr ;

off

f v B
1y Aty v
43. If V'=g(x, ¥}, where x=rcosh 0, y—rsinh 9, prove that
ay_aty_ov 1V 18V
axt at At rEr rtept
44, The variables x, y in f(x, y} are changed to £, % by the substitutions
x=3EZ8 - ), y=Ex, Prove that:
cf f ~ ( of Ef .
E=y '

-,:::-l-'r‘\
[ 4 \ rv

(n) f l r* (G (f - cf)

e &,

2
w Fe oo )

45. If & is a homogeneous function of degree # in x, y, prove that

u &2 &y
%2 ' +2xy ity 4 32 5;51“"("" i,
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PAPER A (1)

1. The circumeentre and orthocenire of a triangle ABC are O, H
respectively.  Prove that if AH meets BC at D and the circumcircle again
at P, then HD=DP.

Show how to construct a triangle given the circumcentre, the orthocentre
and the straight line containing one side. (O.C)

2. Determine the ranges of values of p for which the equation
{x — 1)¥x — 4y =px has real roots.

If p is small, prove that the roots of the equation are approximately
1 -4p++%p® and 4+ Ep- 5% (L.)

3. (i) Find the wvalues of & for which the quadratic equations
X2+ kx— 6k =0, x2— 2x — k=0 have a common root.
(it} Solve the equation [2x 7 1 1=0. (N.)
7 2x 1|
207 x

4. A circle § passes through the point (2, 0) and cuts the circle x® - 2 =1
at the ends of a diameter of that circle. Find the equation of the locus of
the centre of S.

Also find the equation of § if it cuts the circle x¥+ ¥ — 4y — 5=0 ut right
angles, (L.}

5. Solve the equations:
M) vOx+4)- v{x+2)=2; (ii) log, x +log,4-2-5, {08

6. From a variable poiat on the parabola y® = 4ax two straight lines of
gradients +1 are drawn 10 meet the parabola again at P, (2. The tangents
at P, O meet at R. Prove that the locus of R is a parabola whose vertex
is the point (- 44, D).

7. (a} The sum of the first # terms of an arithmetic series is the same as
the sum of the first p terms where 2 +#p. Prove that the sum
of the first (7 + p) terms is zero.

{&) The uth term of a series whose first term is unity is
L {1
if [¢f #1, prove that the sum of the first # terms is
(L= -ryy
A= -9 )

8. Expand y=¢*"* in a series of ascending powers of x as far as the
term in x% and find the value of v, correct to three significant figures, when
x=013,

LY
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Coqny [ . o VR de
9. Evaluate: (i) fz-x—xa'x{l’ . (i) AR -A

(ii) [x* (log x)? dx.

10, By writing the following polar equations in Cartesian coordinates,
identify the curves represented by them giving a rough sketch in each case:

() r(l+cos8)=2a; (i) r=2acost; (i) r¥sin 26 =2% (L)

11. A pulley wheel is made by cutting a groove, whose cross-section is a
semicircle radius r, round a right circular cylinder of height 2r and radius
R(R>r). Show that the total surface area of the pulley is 2n(R* + nRr - 2r¥)
and that its volume is 3n(5R% — 3nRr2+ 4r7).

12. Prove that the lines joining the mid-points of opposite edges of a
tetrahedron meet at a point & and are bisected there.

Prove that the lines joining the vertices of the tetrabedron to the centroids
of the opposite faces also meet at G,

PAPER A (2)

1. The tangent at P io the circumcircle of a triangle ABP meets AY
produced at ©. Prove that: (i) OA . OB =0P%; (ii) 04: GB=PA%: PR,
Hence, or otherwise, prove that if P is a variable poiat in a plane containing
two fixed points A4 and B, and if the ratio PA: PB has a constant value &,
greater than unity, then the locus of P is a circle of radius £A48/(k%*~1). (L)

2. Atriangle ABC is inscribed in a circle radius R.  The internal bisectors
of the angles A, B and C meet the circle again at 4;, B, and C, respectively.
Prove that the lengths of the sides of the triangle 4,5,C; are 2R cos 14,
2R cos 38, 2R cos 1C.

3. (g) Solve the simultaneous equations xp+x+3=0, xH%+2*-5=0.
(4} Prove that there are iwo values of & for which the equation
(x +alx+ b) + k(x®— ¢} =0 has equal roots. {Assumeq, band ¢
are NON-zero.)
Show that these values of k are real and different only when ¢
does not lic between o® and 52, (N

4. Prove that the equation of the pair of straight lines through the origin
perpendicular to the pair ax®-+ 2hxy + by*=0 is bx? - 2hxy + ayt=0.
Deduce the equation of the pair of straight lines through the point {x', ¥)
which are perpendicular to the pair ax®+ 2hxy+ byt =0 and that of the circle
through the four points of intersection of these two pairs. (C.)

5, Two complex numbers 2,, 2, are represented by points on an Argand
diagram. Show how to construct geometrically the points which represent
2, +7, and z;— z,. Find geometrically, or otherwise, the following loci on
the Argand diagram:

GY {z+ 382~ |z~ 32 =12, (i} 2+ k|2 + [z~ ik|® =104%
(i) am{(z - iz + )} =3
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6. The four points of the parabola x—at®, y—2at with parameters
{1y 1y b3, 1y licon a circle.  Prove that 4+ £+ 55+ =0
Prove that the parabola y* =16x and the circle x*+y* - 40x - 16y - 48 =0
meet at the point P (36, 24) and one other point Q. Prove further that PO
is a diameter of the circle and a normal at Q to the parabola.

7. State the sum of the first # terms of the geometrical progression whose
first term is @ and whose common ratio is r when r=1.

Show that i G I ) = - B 10E- D if x £ 0or L1
r=1
Hence, or otherwise, prove that
cosh u+cosh3u+ .. . +cosh (2 - Wu=sinh 2nuf2 sinh u,
when 2 # 0. (N

8. () Expand 2x/(1 - x)(1 + &%), where |x| <1, in ascending powers of x
and find the coefficients of x* when » is in the forms 3m, 4m+ 1,
dm+2, 4m+ 3 respectively.

(ii} Prove that the coefficient of x* in the expansion of log (1 + x -+ x%)
is - 2/n or 1/a, stating the condition under which each occur.

(L)
9, (i) Integrate: (a) f sin® x cos® x dx; (b) f sin 2x cos 3x dx.
b7 cos x + 11 sin x
" Lt = 2,
(i) Prove that }; 3 cos Xt 4 5in x dx=r+log % (L)

10. By putting y=(x, obtain a parametric representation of the curve
K+ y*=3axy. Sketch the curve and obtain the radii of curvature of the
two branches at the origin. {0.C)

11. Find the equation of the plane passing through the line
x =4(y- 3)=%z- 5) and perpendicular to the plane 2x+ 7y -3z =1.

12. The variables r, 0, x, » are connected by the equations r =+/(x%+ 3%,

f—tan~' {v/x). Determine the partial differential coefficients a—r, ér &

o & o b
. ar for &0 fob
and verlfy that -aji'/wajt = ax a—y‘ (0.C)
PAPER A (3}

1. In a triangle ABC, D is the mid-point of CA4 and E is the point on BC
such that 2BE=EC. ‘The lines AF, BD meet at F; show that AF=3FF
and BF=FD.

The lines CF, AR meet at P; show that EP is parallel to CA. (0.C)

2, (a) If x+ 2 and x - 4 are factors of the quartic 2x*— 5x%+ax®+ bx+ 8§,
find the values of @ and . Determine the other linear factors
of the quartic.

(b} If a and b are real, prove that the roots of the guadratic equation
(3a - H)x®+(b— a)x ~ 2a=0 are real. (N.)
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3. Verify that the expression a®+ 8+ c2-2be-2ca-2ab is equal to
(a+b&-c)®-4ab.
Hence, or otherwise, prove that the expression is equal to
(at B+yNa—P-yNa-L+yXatB-y),
where a=+/a, f=+/b, y=+/r.
Hence, or otherwise, find one solution of each of the following equations:
M) V- 6+ (x-1)=+/(3x - 5%, _
(1) (6 —x}— (1 - x}=+(5-3x). (0.C)
4, (i) Show that x+ ¥+ z is a factor of the determinant
y+z -y 2z
—-X Z+x -z
2x 2y x+y
and evaluate the determinant as a product of linear factors,
(ii) Solve completely the equation

x 2 x-4]=0.
2x-23x-2 4
2v+3 3x S (L)

%, Prove that the y-axis is the radical axis of the circles ¥®-- 32~ 4x— 9=0,
x¥+ 32 +6x-9=0. Find the eguation of the smallest circle through the
common points A and & of these two circles.

Find also the equations of the circles through 4 and B which have radius 5.
Show that any circle which cuts orthogonally all circles through 4 and B
has its centre on the y-axis. If such a circle also cuts orthogonally the circle
AP+ 32— 2x—dy - 250, find its equation. (N)

6, (i) Show that, if the roots of the equation x®- 5x¥+gx—8=0 are in
geometric progression, then ¢ =10,

(i) If «, B, v are the roots of the equation x° — x*+ 4x + 7=0, find the

cquation whose roots are 8+, ¥ + %, %+ 5. (C)

7. A given line Jx+ my =1 meets the hyperbola x%/a® - /62 =1 at A4, B
and its asymptotes at C, D. Prove that 48 and CD have the same
mid-point M and that M lies on the line mx/a®+ Iy/b*=0.

If the given line passes through the fixed point (=, B), prove that the locus
of M is (x®~ ax)fa®— (3 - By)/h2=0, {0.C)

8. (@) If 3un+y=2u,— 1 for all positive integral values of » and u, =1,
prove by induction that ., =3()"—[. Find the sum of the first
n terms of the series whose nth term is u,,.
(&) If |x] <1, prove that the sum to infinity of the series

FoSx+3%r oL +(dnt X"+ L ..
is {1+ 3x)/(1 - X% (N.)
9. Integrate with respect to x: (i) ;&;_12). (ii) ;—, log (1+x%.
g dx

Evaluate P S
fa a® cos® x + b sin x



REVISIGN PAPERS 341

10, If p is the perpendicular from the pole O to the tangent to a curve at
a point P whose distance from O is r, prove that the radius of curvature at P
is rgg- If C is the centre of curvature at P for the curve given by r?=2ap?,
prove that PC=2%+/(2ary and OC=4+/(8ar - 3r%).

11. ABCD is a rectangle and @ is a point on the normal at C to the piane
of the rectangle; 4B =g, AD=5and CO -h. P is a point on AQ and the
line through P in the plane AQB which is perpendicular to 40 meets Afat M.

If AP =x, show that PM =x /(8% + B®)/a, AM =x+/(a®+ b+ i)/a.

Prove that the cosine of the acute angle between the planes OA8 and OAD
is abj+/{(&*+ FEXB2 + hF)). (L)

12. Show that the spheres
AT yE4g?=25, A%+ i+t 18k - 24y - 40z +225-0
touch each other and find the coordinates of the common point.

PAPER A (4)

1. In the acute-angled triangle ABC the perpendicular from 4 to BC cuts
the incircie at Pand Q; the centre of the incircle is 7 and its radius ». Prove
that A7 =r cosec +4; the perpendicular distance of 7 from P is the positive
value of r cosec 34 5in H(C - B), and the length PQ is

2r cosec ¥A+/{cos B cos C). (0.CH

2. (i) The expression ax®+bx®+cx+d has the values 7, 2, 1, 10
respectively when x isequal to 1, 2, 3, 4. Evaluate a, b, cand 4.
(i) Given that x =2 is one solution of the equation

84x% - 157x? — kx+ 78=0,
find the vabze of k& and obtain the other solutions. (0.C)

3. If the equation ax®+ 2hxy + by® —0 represents the pair of lines p=myx,
y=myx, show that my +my, = - 2kib, mymy=alb.
Find the equation of the pair of lines obtained by rotating the lines
X%+ 2kxy + 3® =0 in the positive sense through the acute angle whose tangent
is 2, expressing the coefficients in terms of k. (N

4. A, B, C, D are the points in the Argand diagram representing the
complex numbers «, B, y, 3. I (x-B)/(y - &) is purely imaginary, prove
that 48, CD are perpendicular.

Show also that, if 4, B, C are the vertices of an isosceles triangle right-angled
at B, then o+ 22 +92 =20(a +9).

8, Prove that, if « is a repeated root of the polynomial equation f(x) =0,
then « is a root of the equation f{x)=-0.

Given that the equation 4x%+ x?+ 3x+ 1=0 has a repeated root, find its

value. {C.)
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6. (i) Show that
x(x+ 1M 2x+ 1y =Ax(c + 1x+ D(x + 3)+ Blx— 2Hx - Dxfx + 1)
for certain constant values of 4 and B and find these values.
Hence, or otherwise, sum to # terms the series
1.2.3+2.3.5+3.4.7+ ...
(ii} Prove that the sum of » terms of the series
2.1,2.2 2.3,
2.3 3.4 4.5 °°°
is 221+ 2)- 1. ©.C)
7. State Taylor's theorem for the expansion of fla+ k) in a series of

ascending powers of 1. Prove that the first four terms in the Taylor expansion
of tan 1 (1 +4) are In+3h— 142+ 548

o ocosx 1 x
. . - SX 1l S U

8, Prove that: (i) j; V@-sinf %) dx=73%m; (i) fn I+1“dx ™

i

i) f B Slog2- 4. )

1 VX

1 2."! 1
9, If n>>0, prove that f Ml-xtde=_"— f X1 - X .

y 2n+3J,

1
Hence evaluate f x5(1 - )t dx.
11

10. A straight line y = mx — ¢ crosses the axis OX at 4. Find the equation
of the line in polar coordinates using O as pole and G X as initial line.

If P{r,8) is a point on the line where 0<8<{x, find the volume formed
by the revolution of the triangle OFA about the axis GX in terms of m, ¢, 6.

11, The sides of a triangle a, &, c are of lengths 5, 6, 7 cm respectively, 1If
the percentage errors made in the measurements of the sides were +0-2,
+ 04, +0-6 respectively, use logarithmic differentiation to find the percentage
error in the area of the triangle.

12. Find the equation of the plane through the points (1,0, 0), (0, 3, 4)
and parallel to the straight line joining the points (0, 2, 0), (0,0, 3). Also
find the perpendicular distance between the plane and the straight line.

(L)

PAPER A (5)

1. If P is any point on the circumcircle of a triangle ABC, prove that
L, M, N the feet of the perpendiculars from P to BC, CA, AR respectively
are coilinear—the pedal line of P.
If @ is any other point on the circwincirele prove that the pedal lines of
P and @ intersect at an angle equal to angle PCQ.
2, (i) Use the substitution x =¢— 2 to solve the equation
x4+ 8x3 4 16x% - 36=0,
giving only the values of the real solutions,
{ii) If the equations x2+ x + p =0, gx%~ x+ 1 =0 have a common root,
prove that (pg- 12 +(p+ ){g+ =0
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3. Prove that, if x is real and a, b are unequal, the expression
(xt+ ax -+ /(X + bx+¢) can take any value when ¢<0.

Sketch the graph of y=(c+ 5x - 6)/(x® - x - 6). (C)
4. Show that e 26 1j=({-1P
2 2 1
Gy -+ 19 1

The tangents at the points ©, R on the parabola y¥=4ax meetat P. If §
is the mld-pomt of QR and P moves in such a way that the area of the triangle
PQR is constant, show that the distance between P and S is constant. {N.)

5. The equations of two circles Sy, S5, are
ayyi-bx-3=0, x%+)yF+8x+11=0
Show that the coaxal system to which S, and S, belong has real limiting points

and find the coordinates of these points.
Obtain the equation of the circle through the point (0, 1) orthogonal to

S, and S, (M)
6. (i) Find the coefficients of x® and x® in the expansion of (1-+x+2x%)>
{ii) Prove that
Cre1)2n+3) Qa-DQRn+1)_ A2u+1)
n+1n+2) me+rl)  nn+ I)(n+2)
! Find the sum of the first » terms of the series
3 5 7

T.2.372.3.473.4.5" (0.C)

. Find the first differential coefficient of y with respect to x if y=sin™ x.

Use this result to expand sin™ x as far as the term in x1! and hence show
that the value of = to five significant figures is 3-1416.

. 3 ~1 _—

8. (i} Evaluate the integrals [ xtan! x® dx; f v ()

{ii} Prove that if m, n are integers, cos mx cos rx dx=0 if m#n,

o =7 if m=n,

(x- D2 - x)*
x;p-l—l

9 (YW=

1
2y =12).
(ii) Without attempting to evaluate them, determine whether the
following integrals are positive, negative, or zero:

13 w
f 31— xP dx; f sin? x cos® x dx; e *sinx dx. (0.C.)
3 o 3
10. Find the wvolume of the solid formed by rotating the circle
x2+ )2 - 4y +3=0 about the x-axis.

11. G is the centroid of a triangle whose vertices are the points in which
the coordinate axes meet the plane x4+ my +nz =p, where B+ mb+n?=1.
The perpendicular at & to this plane meets the coordinate planes in 4, B, C.
Prove that 1/GA+ 1/GB+ 1/GC=3/p. (L.)

dx, p>0, by writing x=2/y, prove that
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12. If ¥ 1s defined by the relationships

1
V'—'-';, P=(x-alf+(y- b, where a, b are constants,

prove that:
. av eV ) ov av .
) (x- a)-— +{y - b)?y +V=0; (i) ( ) ay( 7 ) 265
oV d iV
{3i) cx( B ) a_y( o ) 0.C)

PAPER A (&

1. If A is the orthocentre of triangle ABC and the altilude 4D is produced
to meet the circumcircle at P, prove that S0 =DP,

If the diameter of the circumeircle through 4 meets the circle again at ©,
prove that HQ bisects BC. [{98)

2. Writing #, for x®+x"+ 1, where n# 15 a positive integer, express
H, 45— X%u; as a product of two factors one of which is x¥- 1,

Deduce that, if x*+x+1 is a factor of ., then it is also a factor of w1y
and prove that x®+x+1 is a factor of iy, (0.C.)
3, Show that if y ={x*- x+a)/(x - 1)% then for all real values of x,
yzl-1daifa>0; y<1-1/d4aif a<0.

Sketch the graph of the function when g~ -1, (L.}
4. Find the condition that the circle x2+ y*+2g,x+ 2f ¥+ ¢; =0 should
cut the circle x2 + 3%+ 2gx +- 2/ + ¢ =0 at the ends of a diameter of the latter
circle,

Find the locus of the centre of a circle which cuts the circles x® + 3*=25,

a2 )2 - 2x -4y —11=0 at the ends of diameters of the latter circles.
5 (i) W z;, zp are complex numbers such that }zy|=|z,|, prove that

(21 + zg}(zy ~ 2;) is purely imaginary.

(it) Represent the roots of the eguation z*+8§-=0 in an Argand

diagram, -
(I-¢ 3+
- iv3 (C.C)
6. Prove that there are just two values of the constant @ for which the
three equations 3x-2y—8, 2x~ay=2a+1, {(a-2)x+y=4-a have a
common solution and find these values, Solve the equations for each of
these values of 4. (M)
7. A rectangular hyperbola is given parametrlcally by the equations
x—¢f, y=¢/t. M the four points of the curve with parameters 1y, 1, 1y, 1, lic
on a circle, show that £, f,#,7, =1 and prove the converse result.

A variable circle passes through the fixed points 4, B of a rectangular
hyperbola and meets the hyperbola again at P, Q. Show that the direction
of PO is fixed. 0.CH

8. (i} If 5, is the sum of » terms of a G.P., common ratio r, prove that

dSn
(=D =(r= 1S, = 1S,

(i) Find the first three terms in the expansion of log (1 + tan x) in
ascending powers of x.

(iii} Find the vahie of
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9. (i) Find f et sin 2x dx.

.. Vi oxtde
(ii} Prove that A f(x,_i_z}—«/z log, {1 + +/2). (C.)

1
10. If w, =[ X" cos rex dx, where n>>1, show that
L1}
®ig+ 1 — Ditn g+ =0,
1
and hence evaluate f x* cos mx dx.
1}

11, Sketch the curve r —a(l - cos 8) and prove that ¢, the angle between
the radius vector and the tangent, is equal to 49. If any line through the pole
cuts the curve at points P and @ prove: (i) the tangenis at P, 0 are
perpendicular; (ii) the mid-point of PQ lies on a circle.

12, A minor arc of a circle, radius «, revolves about its chord which
subtends an angle 2a at the centre of the circle. Prove that the volume
generated is 2ma®(sin « — 3 sin® « — « cos «) and find its sucface area.

PAPER A (7)

1. If @ is the circumicentre and A the orthocentre of a triangle ABC, prove
the following results:

(i} the radius of the circle BCH is R, the radius of the circumcircle of
triangle ABC,
(ii) AH=2Rcos A;
(iii) the area of triangle OAH =4 R%(sin 28 ~s5in 2C).
2. (i) It is required to express x2+ 7)y*+ 2022+ 8yz~2zx+4xy in the
form
Alx+pyt+gzl+ B(y+rz+ Co3,
where A, B, C, p, g, r are constants. Determine the values of
these constants angd deduce that the given expression is never
negative for real values of x, », z.
(i) Show that, if a, b, p, ¢ are real numbers, so also are the roots of
the equation,

at b
LSRN AR
x-p x-¢
3. Prove that
a a® g =kabe(a - BXb - cHe-aXa+b+0),
LY
cc?ct

where k is 2 numerical constant and find the value of &.

Factorise |a a® a®l.
b b P
e 8 ot (o8]
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4. Show that the area of the triangle with vertices (0, 0), (xp, ¥,), (X, ¥a)

is :E‘}(xﬂh - Xay).
If O is the origin and if the line /x+my=1 meets the line pair
axi+ 2hxy+ by?=0 at P and O, prove that the area of the triangle OPQ is

3/ (hE — ab) .
am® — 2him + b2
5. Prove that the equation of a circle is of the form
X243 2gx 4 2fy+ e=0.

Two circles intersect at the points 4 and B. The x-axis is taken along the
common chord; the length of A8 is 2/ and the mid-point of 48 is the origin
¢2. Prove that the equations of the circles are

X342 2y =K, 1P+ -2k y=iP
Find the condition for the circles to cut at right angles. (0.C)

£

6. Obtain expressions for cog 79 and sin 70 in terms of cos 9 and sin 6 by
equating the valaes of (cos 0+ sin B)7 given by the binomial theorem and
by de Moivre’s theorem.

Hence express tan 79 in terms of tan 0.
Prove that tan® /7 + tan? 2n/7 + tan® In/7 =21,

7. Prove that the equation of the normal to the ellipse x¥a®+ 3/b* =1 at
the point (g ¢os 9, b sin 6} is ax sin 0 - by cos 8 =(a®~ H*) sin B cos 9.

Show that when 54/2 >q>b>>0 all normals meet the minor axis at points
within the ellipse. I a>H+/2, find the gradients of the two normals apart
from the y-axis that pass through the point (0, —54). 1f these normals are
at right angles, find the eccentricity of the ellipse. (N.)

B. (i) If a. denotes the #th term of the series which begins
22 3
e v- oy
1.(1+2.2% 1.(1+2.29(1+2 .39
prove that the sum to n terms is 33 - a./n%).

{ii) Prove by induction thet if # is a positive integer, then
2. 40+ 3T g divisible by 11, (0.C)

9. Prove that

1+

oo " ) 26 n
@ 3 (-1t (;:-);=sinﬂx; iy S (-1)n-3+43 O%%ms "

=1 - =10

10. A curve is given by the equations
x=a(2cos 1 - cos ), y=a(2sin{-sin2y),

where ¢ is a parameter. Prove that the equation of the tangent at the point
parameter ¢ is
x sin 3¢/ — y ¢os (31/2) = 3a sin {2f2).
Show that the distance from the origin at which this tangent meets the line
¥ =x tant is independent of f.



REVISION PAPERS 347

11. (a) Prove that
i Sx-1
@ | I dyedlog2; Gi) f U IRT N L

L oS X+ Sin X
(6) If 0<x<m, show that

— _x_ dx W= T—X
a Sm X 51N X
2qrf 5 X
and deduce that f _*_ gy-jrlog3. N
i3 5in X

12. Find the centre and radius of the sphere
X4y 2t -2x—4p-6z-2=0.
Show that the intersection of this sphere and the plane x+ 2y + 2z - 20-=01is
a cirele centre the point (2, 4, 5} and find the radius of this circle. (L)

PAPER A (B)
1. Prove the theorem of Menelaus that, if a line meets the sides BC, C4,
AB of a triangle in L, M, N, then
BL CM AN
LC MA NB

The mid-points of BC, CA, AB are D, E, F; a line meets EF, FD), DE in
P, O, Rrespectively and AP, BQ, CR meet BC, CA, AB inL, M, N. Prove
that L, M, N are collinear, (0.C)

2. {i) By writing y=x+£r solve the equation

2x1- 9x3 4 14x2 - Ix + 2=0.
(i) Faclorise Bc+ca+a®h- bet— ca®- ab®

=-1

3. If a, b, ¢ are uncqual and

| be+ax a®|=0,
1 catbx ¥

1 ab+ecx °

prove that x =a+ b+ e.

4, Prove that the equation of the pair of straight lines joining the origin
to the points of intersection of the circle x®+ 3%+ 2gx 1 2/ =0 and the line
pxigy=ris

(2pg+ N+ 2pf+qe)xy + 2af + P*=0.

Hence obtain the equation of the line joining the two points of intersection,
other than the origin, of the circle x®+ 3%+ 2x+2y=0 and the line-pair
xB—4xy+2%=0. ()

%, Prove that, when # is an integer, {cos 8+ 7 sin 0)® =cos #0 + i sin a0,

By writing 2 cos 8 =z+z7%, 2isin 0=z - z7%, where 7 =cos 8+ sin 6, show
that

28 gin® O cos? 0 =sin 70 - 3 sin 50+ sin 304 5sin 0, (L)
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6. The roots of the equation ax® - bx? + cx —d=0are «, 8,7. Prove that
the equation whose roots are 87"+, ¢ 1+ oL, o141 s
d® - 2edy® + {2+ bd)y + ad - b =0.

If id—:’ =%- prove that 2¢®— 9bed + 27ad?*=0. (o8]

7. Prove that the equation of the normai to (he parabola ¥ =4ax at the
point {af?, 2af) is y+ tx=2ar+al.

Hence prove that, if the normals at the points (at,2, 2ar)), (at?, 2aty),
(aty?, 2at;) are concurrent, then #y+ fo+ f4=0.

P, @ are variable poinis on the parabola such that P is parallel to the
fixed line x+ ky=0. The normals to the curve at P, O meet at R. Prove
that the Iocus of R is the normal to the parabola at 2 fixed point and find
the coordinates of this point. (0.C)

8. Sum to » terms each of the series:

() 12.2 +22.34+3%. 4442 5+ ..
(i) 1+3x+5%5+ T3+ . ..

9. Prove that

bix
@ %;—_”é‘i; S 4-2vE) (D) f ¥t bog, x dx =32+ 1),
u 1
7 4y
Evaluate f] 37 cos % (N}

10. 1f a0, prove that

o [flogx . . [t Uogxy 3
(3] fi x dx=4-2(2-loga)va; jl ) dx=4(log @*.
Show that (log x)/+/x has 2 maximum value when x =é2,
The curve y= (log x){+/x meets the x-axis at .4, and B is the foot of the
maximum ordinate PB, Show that the distance from the x-axis of the
centroid of the area bounded by 4B, BP and the arc AP is {- (N.)

11. Prove that the pedal equation of the curve #® =a® cos 20 is »3 =a%p.
Prove that the area of one loop of this curve is 34® and that the area of the
surface formed by the rotation of this loop about the initial line is (2 - v/2)=q®
12. Find the equations of the straight line through the point { - 6, — 4, - 6)
which cuts each of the straight lines dx=p=34z, -x-2=Hy-1)=-z-1|
and the coordinates of the points in which it meets them.

PAPER A (9)

1. Prove that, if P, @, R are points on the sides BC, CA, AB respectively
of a triangle ABC and if 8P.CQ . AR=PC . QA . RSB, then AP, BO and
CR are concurrent.

AP, BQ, CR are medians of a triangle ABC. P’ is the point on BC such
that / BAP =2 CAP and £.CAP’ =2 BAP: (0", R’ are points on CA, AH
similarly defined. Prove that AP B, CR’ are concurrent. (C)



REVISION PAPERS 149

2 (i) If the expression ax?+2bx-+c¢ can be written in the form
AQx - x,)* + Blx - x,)%, where 4, B are independent of x, prove
that axpx,+ Mx; + x) +c=0.

(i Find g and & if x2+ x+ 1 is a factor of
x-S haxt+xP bt -dx -3
3. {a) Find the values of & for which the lines
2x+kya4=0, 4x-y-2k=0, 3x+y-1=0
are concutrent.
(5 Show that

l1+a, a+a? at+1|=k(b-c)c—ala-b),

1+b, b+b% 11

L+e, c+c% 2+

and find the value of the numerical constant &. {N)

4. A system of coaxal circles is defined by one of the limiting points
(- 1,2y and the circle x%2+ 2+ 18x+4y - 35=0. Find the coordinates of
the second limiting point,

Find also the equation of the other circle of the system which has the

same radius as the given circle. (C.}
5. The roots of the equation x®=gx -+ are «, B,y. Prove that:
) Xet=2q; i) Sod =3r;
(i) o —gea® + rat; {iv) 63 af = S(Za")(Zaﬁ). (0.C).

6. Find the equation of the chord joining the points with parameters
& and ¢ on the ellipse x%/a® + y}/B2 =1.

If this chord is a tangent to the hyperbola x¥a®-3bt =1, find the
equation of the locus of the mid-point of the chord. (L.}

7. Find the sums of the first » terms of the series:
Gy 1384324883 | .. +(n- D)%
(i) 1.2.3.4+2.,3.4,5+3.4.5 6+ ...
+r{n+ m - D= ),
(iii) smO+sin30+5in 56+ ., . . +sin(@r- 1),

8. Prove that if y =x ~ {1 - x*}¥ sin™1 x, then (1 -~ x® ji=x(x— ¥)

. dy d% d%
Use this result to evaluate dx o dit at x=0.
By means of Maclaurin’s theorem show that, when x is small,
x=(1-xH¥sin~! x is approximately equal to 4x*. (0.C)
. L Gx+ Ddx
9. that | -—— =S5 wjog, 2
(@) Prove that | o et 2+ 3) 0%
1 x2dx 1 xR et dy
i 4= =2 S
®» L5 =&

show by putting x— —« in A4, that A =8,
Evaluate 4 + B and deduce that 4 =1- (N
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it
10, For the polar curve r=j(8), prove that tantfxzrgrs where ¢ is the

angle between the radius vector and the tangent and obtain results for sin¢
and cos ¢,

If P, P are neighbouring points on a plane curve and PQ, P’ are drawn
perpendicular to P, OF, where O is the pole, show that, as P - P, the

angle POQ — I= - ¢ and the length PQ —+ d{‘v

11. Show that the equations of any line cutting both the lines
Yy-mx=0=z-~¢, y+mx:=0=z+c can be expressed in the form

(mx L e = - (y —pe)fr =z,

12. A function z of two independent variables x and v is defined by the
rclationship
Z=x4+yp4x4/(x+3).
ETV EJV

Ty

Express V as a function of x and z and prove that when Vis expressed in

terms of x and z:

T ) 2 o afev 1%
0] xé-z-~2 o =1, (ii) ﬁ(§)+ ?.‘.(6 ) =0 {0.C)

PAPER A (1)
L. Prove that, in any triangle ABC:
{i) asindBsin{C=rcosid; (i) A=r®cotiAcotiBcotlC,

where r is the radius of the incircle and A the area of the triangle.
In a triangle r—10 cm, 4=280°, B=60°. Calculate to three significant

&z
If ¥= a_j:— —, prove lhat

figures the length of the side @ and the area of the triangle. (0.C)
2. (i) If >0 and b?-<dae, prove that ax®+ bx+o>0 for all real values
of x,
(ii) Prove that 2x2+ dxy + 52+ 3x + 6y +4 >0 for all real values of
x and y, C.)

3. The line and circle whose equations are x+ k=0 and x®+y* —a® are
denoted by L and S respectively.  Prove that, if 40, the locus of a point
whose distance from L is equal to the length of a tangent ta S is a parabola.
Prove also that if L does not meet .S, then the parabola does not imeet L or 5
and that if L meets § at 4 and B, then the parabela touches $ at A and B.

(0.C)

4. The complex number z =x + iy is represented by Plx, ») in the Argand
diagram. If (z— 1}/(z - N is of the form /g, where ¢ is real, prove that P must
lie on the circle, centre (4,4), radius 1/+/2.

5. The cubic equation x3+gx+r=0 has two roots each equal to «,
express g and r in terms of o and prove that 4¢7 + 27/% -0,

Solve the equation 27x%— 36x - 16=0.
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6. By induction, or otherwise, prove the following results:
(@ 12.22+22,32+3 £+ ... nterns
' = A+ Dn+ 23+ 6+ 1);
1 4 7 in+4

Y o - 2 I ) e — _____2:1{-]__ .
(ii) 1.32-1—2.42 +3.52 + n terms (T 1+ D) 4
% P is the point (a, 24) on the parabola ye=dax. Find the cquation of
the normal to the parabola at P and verify that it passes through the point

(52, - 2a).
Prove that every chord of the parabola, other than this normal, which
passes through (54, — 2a) subtends a right angle at P. (L.)

. in? dy : d%y
8 (i) Ify=¢""7, provethat Ay =y sin 2x; e =1yl + 4 cos Zx - cos 4x),
Obtain the expansion of ¥ by Maclaurin’s theorem as far as the
term in x*.
(i) By integrating term by term the expansion of (1+x¥)™, |x|<1,
find the sum of the infinite series:
1-4+3-2+3- ...
R x
; h Y A
9, Integrate with respect to x. TR
Find the values of:
N LA o (T dx
0] [ x%sin x dx; (i) f oo
o . 2—cosx

10. If a, b, c are constants such that £%+4ac, determine constants P, 9, R

such that
i(_Px+Q S SRR SR
de\axd+bx+e) (a+bx+el axi+bx+c
Evaluate the integrals
1 dx 1 dx
0 (x3+4x+l)‘2 and fo(x=+4x+4)z' (N.)

11. Find the equations of the planes through the line 3x =2y =3z which
make angles of 30° with the plane z=0. If the axis of z is vertical, show that
the lines of greatest slope in these planes make angles of tan™ 1 with the
given line.

12. In a tettahedron PQRS, the edges PQ, RS are perpendicular to the
faces PRS, POS respectively; L is the mid-point of P§ and M the mid-point
of OR.

Prove that: (i) PG+ RS*=QR®-PS% (i) PM=SM=10R;

(iii) 4LM® =P(* + RSE, 0.C)

PAPER A (11}

1. Prove that the feet of the perpendiculars from a point P on the
circumcircle of a triangle to the sides of the triangle lic on a straight line—
the Simsen line of P,

If AD, BE, CF are the altitudes of triangle ABC and 4D produced meets
the circumcircle at Q, prove that the Simson line of  is parallel to EF, (C)
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2. (i) Show that the equation -+ (x®+2y- /(x4 2x+-5)=1 has no
solution if it is assumed that the square roots are positive.

(it} Show that, if x®+3px+¢=0 and x =y - p/y, then )* satisfies a
certain quadratic equation. By solving this guadratic equation
in the case p=g=2, obtain one root of the equation

¥16x+2=0 {0.C)
3. (i) Evaluate {i} Solve for x the equation
1 -1 -1 x+n nl1 n+2 nl-3 ) =0,
-1 1 -1 nox+atl o pe #+ 3
-1 -1 I " n+1l x+twrw+2 n+ld

n ntl 2 x+nr3 (C)

4. The line x cos =+ y sin & —=p meets the circle x2+ % =42 at the points
P, Q. Prove that the equation of the circle § of which PQ is a diameter is
X%+ y* - a?=2p{x cos o+ ysin o - g,

The line PO varies in such a manner that .§ is always otthogonal to the
fixed circle %4 y2 -+ 2/ a=0. Prove that the equation of the locus of the
centre of §is x2+ 2+ fy=0. (N.)

5. Mark on an Argand diagram a point P to represent a certain complex
niimber z and put, in the same diagram, points ©, R to represent z - 2 and
1/z respectively.

Determine the locus of @ and R when P moves such that: (i} its modulus
remains constant; (i) its amplitude remains constant; (iii) its real part
remains constant. (o]

6. The coordinates of the mid-point of the line joining the peints
(an®, 2aw), (av®, 2av) are (X, ¥). Express u+v and uv in terms of X and Y,
A variable chord of the parabola y*=4ax passes through the fixed point
{b,0). Prove that the locus of the mid-peint of the chord is a parabola and
find the coordinates of its vertex and focus.
7. (i) Write down the nth term of the series
1.2+2.5+3.8+4.11+ , ..
and prove that the sum of the first # terms is #%n - 1),
(ii) Numbets A, A, A,, . . . are deficed as follows:

Ay=2r Ay =224 A+ L.+ A, form=1,2, ...
Find 4,, 4; and 4, and prove that the numbers A,, 4;, 4,, ... form a G.P.
Find the sum of n terms of the series 4, + Az + A3+ . . .

(0.C)
8. If y =% sin 2x, prove the results
dy_ : Loy
"daé = 2\/2 e gin (2x+ &ﬂ), e
Deduce that, if x¥ and higher powers are neglected in the Maclaurin
expansion of y, then

=24/ 2)" 6% sin (2x + }nm),

p=2x+ 422 $x8, (0.C)
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. e cos X

9, Integrate with respect to x: (@) [ e @ T4 cos x
Sketch the curve y=sec~! x for -3n<y<}n and show that the area

bounded by this portion of the curve and the ordinate x =2is
dr-2log 2+ v3) <)
10. By using the method of integration by parts, show that, if 1 is a positive

integer greater than 2,
* sinh® & 1 (7 du

i =—— T
, cosh” u n-1}, cosh"~?u

Deduce that
du n-2 f° du = du
_— - U t —_ L.
fcush"u a—-1}, cosh""uand evaluaeo cosh® u (L
11. The normal to the curve r? =a® cos 20 at a point P meets the initial line
al G. Prove that if r is the distance of P from the pole,
PG =atrf(a®+2r%).

12. Find the coordinaies of the centre of the circle which passes through
the points (— 1,0, 0), (0, 2,0), (0,0, 3).

PAPER A (12)

1. The inscribed circle of a triangle ABC touches BC, CA, ABat P, 0, R
respectively. Express the angle RPQ in terms of the angles of the triangle
ARC.

Prove that, if A is the area of triangle 4BC, the area of trianglie POR is

&A% gbela+ b+ o). (N.)
2. (@) If x+y=da and x®+ y*=40d%, find the value of x%+ 3% and show
that x4+ )% =136at.
(&) Solve the equation
x 2a a |=0
g xXx+da a
2a 22 x-a (N.)

3, Solve, if possible, the simultaneous equations,
2x—Sy+Bzm=l, 3x+2y—62=12, Tx-8y+10z=2;
in the cases: (i) x=14; (i) »--12.
Show that in one case the number of solutions is infinite and in this case
give a general solution in which x, y, z are expressed in terms of a single
parameter. <)

4. Prove that the equation x? + 2kxy — y* =0 represents 2 pair of perpen-
dicular lines through the origin O.
If A, B are the points in which these lines are cut by the line

XQ08 x+Hysinx=p,
prove that the radius of the circumcircle of the triangle OABis
P/l + 1% {cos 22 + h sin 2x). (N.)
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5@ If 2 < {z-1+2i] < 3, show that the pomt representing the
number 2 in the Argand diagram lies in a certain region of the plane and
indicate this region.

(ii) The equation x* + px2+gx + 6=0, where p, ¢ are teal, has 1--i as one
root, Find p and g and solve the equation completely, (C)

6. Express — +3v+l

x*( Y In partial fractions.

o ri+3r+1 n2n+13)
Prove that 'gl Y Tl T

T. If §=0, §'=0 are the equations of two circles and & is a constant,
what does the equation §+ 45" =0 represent?

A circle S and points ©, A4 are given; a variable circle S’ passes through
O and is such that the radical axis of $ and 5" passes through 4. Prove that
the centre of S” lies on a fixed line perpendicular to 0A. How are S, O, A
related if this fixed line passes through the centre of 5?7 (0.C)

8. Interpret the equation .5+ kLA =0, where §=0 is the equation of a
conic and L=0, M =0 are the equations of two lines while & is a constant.

The line px+gy =1 meets the conic ax®+ 2hxy+by*+ 2gx +2f+ ¢ =0 at
A and B aund from the origin O lines OA, OB are drawn to meet the conic
again at C and D. Find the cquanon of the line pau- OA, OB, and hence
show that the equation of CD is

(C)

clpx+qy+1)+2gx+ f5) =0. (0.C)
: a4
9, (i) Evaluate | 5 T4cas0
(i) Prove that (i) j dx ~ log, 2:
’ GOy 2ea D) O
(ii) fn €% cos x cos 3x dx =51 L)
1]

10. Sketch the curve » —a cos® 40 and show that its total length is 3ra.

11, In a tetrahedron ABCD, AR is perpendicular to CD and AC is
perpendicular to BD. Prove that 4D is perpendicular to BC.

Through the orthocentre H of a triangle ABC is drawn the line HD
perpendicular to the plane ABC. Prove that 48CH is a tetrahedron in
which each edge is perpendicular to the opposite edge

_3xy-2pr-zx du Lo
12, (i) If u TR , prove thatx +y— az_o

(i) If x®+ 25— 3x3z=0 and f(x, y, z) x"y“z, find the values of =~ f
for x= y =z =1 when the independent variables are: (a) x and y,
{h) x and z.
PAPER S (1)

1. Given the incentre [ of a triangle .4 8C and the excentres 1, I, opposite
A, B respectively, show how to construct the triangle ABC.

Show that: (i) 4/. AL =AB. AC; Gi) Af,. I+ Bl il,=112 (N)
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2. (i) Find the range of values of & for which
A+ A+ Dx+Ih+3
is of invariable sign for real values of x.
(ii) Prove that for positive integral values of n,

Pl(nz_r D) xx-1N-= nn= Dn=2) X1+ .

+:n(x—l)“'1l=1+x+x’+ .. +x% (L)

3, (i) When a polynomial is divided either by ax—# or bx - @, where
as:b, the remainders are equal and the guotients are Q;(x) and
Q,(x) Tespectively. Show that ax - b is a factor of Qy(x) and
that x— 1 is a factor of Qy{x)+ Gyx).
(ii) Show that
1 a a® [=(l - 2a cos x +a®) sin x.
cos x €05 2x cos 3x
sin x sin 2x sin 3x (N

4. The line Ix + my + n=0 divides the circle x2+y% 3 2gx+2fy+ec=0into
two arcs, one of which is three times as long as the other, prove that
g+ mf— nE=(F+m){f*+g*-c)

5. State the general solution of the equation cos 8=cos «, where & is
given, and obtain the general solution of the equation cos 49 ==sin 30 in the
form 0 = (4k + 1)/ 14, where k is an integer.

Express this equation as an equation in sin @ and prove that

8 sin /14 sin /14 sin 5=/14 =1. (L.}

6. Find the equation of the normal to the parabola ¥t~ 4ax at the point
{af®, 2at).

The parameters of the points P, 2 ate £, I» respectively. Show that, if
PQ passes through the point (- 2a, 0), then £4ta—2 and the normals at P
and { mect at a point R on the parabola.

If © is the ovigin, show that the circumcircle of triangle POR passes

V+nx+

through O. ()
7. Write down the sth term of the series L + 1.3 + _1.3.5 +
" 7.472.4.6 2.4.6.8 7
L1 1.3.5...2nt+0)
Prove that the sum of the first » terms 15 334 6. . (n+ 5 (L.)

8. Prove that, when a>0,
() log. (@ +x) =log. a+log. (1 +x/a); () & = gtlon.s

Prove that the expansion of @ -1 — x logfa+x) as a power series in x,
begins with a term in x2 and find the caefficient of this term, (0.C)

9. (i) Integrate 1/(x®- 6x + a), distinguishing between the cases when o
is less than, equal to or greater than 9.
(i) Use the substitution x=cos*0+2 sin? § to evaluate

fs[(x — 12 - X00% dx.
1
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18. If the normal at any point P of a curve cuts the x-axis in & and if the
length of the radius of curvature at P is twice PG, prove that l%p’ j—ﬁ =i‘
dy
s

Hence show that p—=(cy ~ 1), where ¢ is a constant and show further that
the curve is & parabola with axis parallel to the y-axis. (N

where p=

11, Two planes make angles «, @ with a horizontal plane and meet thisg
plane in two perpendicular straight Mnes,

(i) If 8is the incliration of the line of intersection of the two planes to the

horizontal, prove that cot?® 8 = cot?® « 4 cot? .

(ii} If ¢ is the angle beiween the normals to the two planes, prove that

08 ¢ =cos « cos 5. (N

12, A sphere of radius R passes through the origin. Show that the ends

of the diameter parallel to the x-axis lie on one of the spheres

X2Lyy s LR =0 (L)

PAPER 8§ (2)

1. From a point P on the circumcircle of a triangle ABC perpendiculars
PL, PM are drawn to the sides AR, BC. The perpendicutar from A to BC
meets the circumcircle again at X and 4K, LM meet at X. Show that the
points P, M, K, X are concyclic.

2. Show that polynomials P, Q of the second degree can be found such

. S R
oD+ 1P (-1 (e 1P
Hence show that, if f{x) =(x+ 1*P - (x - 1)*@, then f{x)+ 1 is divisible by
(x+ 1)* and £(x) - 1 is divisible by (x - 1)%.
Evaluate the coefficients in the polynomial #(x). (0.C)
3. Prove that

bte-a-dit,(bte-a-dB, 1|=64(b— cle— ala - bYa - d)b - d)c - d).
(cta-b-d(cta-b-dp,1

(a+b-c-df, (a+b-c-dB, 1 (C.)

4. A variable straight Jine intersects the line pair ax®+ 2kxy + 52=0 in
P and Q; R is the mid-point of PQ. If PO is of constant length 2/, show
that the equation of the locus of R is (ax + hy)* + (hx + byP= (k% - aB). (N.)

5. If P, P, are points in the complex plane representing the complex
numbers zy, z,, give a geometrical construction for the point representing

that

21 bt zi.
The point representing the complex number z moves so that
z:- 3:__‘_‘."]_.;.
z-6-Ti

Prove that its locus is a cirele.  Find the radius of this circle and the complex
number represented by its centre. :
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. 2k
6. (@) EXPIess ook + Y2k + 3)
prove the result
k=n 2k G
,,E, Gk SNk + 12k +3) @n+ )20+ 3)

(4 Find the coefficient of »® in the expansion of (_x_—_ﬁ?}"i? in
series of ascending powers of x. State the range of values of x for which
the expansion is valid. (N)

7, Two points P;, P; on the hyperbola whose parametric representation
is x=1, y =171, have parameters #,, 1,. The circle on PP, as diameter cuts
the hyperbola again at Py, P,; find the parameters of these points. Show
that the chord P,P, is bisected by the origin and that one of the angles
subtended by it at the circumference of the circle is 2 tan™ +/(~ £/fg). (N.)

. State Leibnitz's theorem for the nth derivative of a product wv, where
u, v are functions of x.

If y=sin (msin™! x), prove that
(1 -xBputa- Qo+ DxYasyt+ (m? - nt)y, -0

drr
for 420, where y, denotes E;c{ for #>>0 and y,=».

as the sum of partial fractions and

By use of Maclaurin’s theorem, prove that, when m =7,

y=Tx— 560+ 11225 - 64x7 . . . (C)
ot atdx o ATt dx
9. Evaluate: (1) fu (—_“1+x9)’¢’ (iL) fu tan x dx; (iii) }1' x(x“+1)’ .

10. Find the Cartesian equation of the curve x=3% p=1(3- % and
sketch the curve.
Determine the equations of the two tangents to the curve at the point
(9, 0) and show that the area of the loop of the curve is 724/3/3.
11. (i) Show that the sphere
(x-a-pXx-a)+(-b-Qy-D+z-c-rz-c) =R
meets the sphere (x — @)+ (¥ ~ B2+ (z - ¢)* = R® along a great circle
of the second spherte.
(ii) Find the equation of the sphere of minimum radius which belongs
to the system S, +28;=0,

where Sy=a+ 2+ 28 -y +dz+ 25
Sy=xt4 2+ 2%+ 4x-+ 2y - 4z, (L.)
12. Variables «, v are defined by the equations
=X sin x cosh y— y cos x sinh p,
v=ysin x cosh y+ x cos x sinh .
. du Ev Bu dv
Write down the valuesof ——» —~» > -~
dx &y dy éx
) 8 ) . Fw Bu By By
Peove that: (i) 2 a{uv}ﬂ P (v —u?)y; (i) et 52‘— a-x2+ 8;5=0i0 -
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PAPER S (3)

1. If D is any point on the side BC of the triangle ABC, prove that the
distance between the circumcentres of the triangles 4DB, ADC is
1BC cosec L ADRB.

2, if a, b, ¢ are unequal numbers and g% - be = 6%~ eq =&, prove that:
() ®+ b+ ct=2k, (i) &®+ 8%+ = Jabe.

3. {a) Discuss the values of 4 and & for which the pair of equations in x, »,

Sx+(Ba+by=6a+2, 2x+(a+by=a+5h,
have: (i) an infinite number of solutions; (i} no finite solution;
(iii) one solution.
{0 11 f(z)= Az*+ Bz® + Cz, find values of the constants A, B, Csuch that
Fale+ 1}~ flx(x~1}=x",
Deduce the sum of the serfes 17 +27+37+ ... +#°% (’L.)

4. Prove that if « is a root of the ¢quation x* - 3x+ 1 =0, then a second
root is «f = 2. What is the value of the third root?

5. Prove that the value of the determinant

xabe

axch

bexa

chax
is unaltered when any two of the letters 4, b, ¢ are reversed in sign.  Prove
also that x+a+ b+ ¢ is a factor and determine ali the linear factors. (C.)

6. A point moves such that the sum of the squares of its distances from
two fixed points is constant. Show that it describes a circle.

8,. 5; are two fixed circles. A variable circle .S cuts 8, orthogonally and
meets S, in points which are the ends of a diameter of 5. Show that the
locus of the centre of S is a circle.

7. Find the equation of the chord of the parabola ¥*=4ax which i
bisected at the paint (4, k).

Find the locus of the mid-points of chords of this parabola which touch
the curve (2ma — Iy)? - 8la(xi—1). (L)

8. Prove that:

1) i L2+t nBntT)y
v eI r+ 2} A+ 1+ 2)
n
(i} 3 #C, cos (a+ 2r0) =(2 cos B)* ¢os {x + nb).
Pt
7 tan 8 40,

1+tan 6 {ii) fxsin"lxdx; (iif} [sinﬁ 8 cos8 048,

4
9. Evaluate: (i) f
1t

1. 1f x* dx
N | T S evaluate i, + oy, dy— th+ 4, and .-
nl
Hence obtain the values of #; and «,.
e . . 2"
Show also that if # is a positive integer, &, ..o ooy and deduce the

values of iy, o, and o, (N.)



REVISION PAPERS 359

11 1 5%* cos? 0 4 g%r® sin? 8 =4%h?, obtain the indefinite integral 1[40
in the form 1ab tan™ {(a tan §/b).

Two ¢qual ellipses of eccentricity e have the same centre ¢ and can be
obtained each from the other by retation through 90° about O. If the area
common to the iwo ellipses is one-half the area of either, prove that
E=2(+/2~ 1.

12. Three concurrent edges of a cube are OA, 0B, OC. A plane equally
inclined to these edges intersects them, produced if necessary, in the points
X, Y, Z and cuts the cube in a section of area §. If 0A=08=0C=a;
00X =QY=0Z=x, show that

S=3v3x* 0<x<a; S=4v3H6ax- 25— 3g%), a<x < 2a;

§=4/30Ca-x), 2a<x<3a. (N)

PAPER S (4)

1. Tn a triangle ABC, [is the incentre and O the circumcenire. With the
usual notation, show that: (i) A7=4R sin B sin 1C; (iD) LI40 =43 B~ C).

Deduce the result, 16 03— (a+ b — 2¢)® sec? 4C+ (a - b)? cosec® JC.

2. Prove that if f{x) is a polynomial in x and « is a number such that
(@) =0, then x — a is a factor of f(x).
Hence show that if f(x) has degree #>0, then the equation f(x)=0 has at
most # distinct roots; and that f(x) cannot assume the same value for more
than 7 values of x. (L)

3. Prove that the line ax + by + ¢ =0 forms with the two lines

(ax + by)t=3(ay - bx)*
an equilateral triangle.
Find the equation of the bisectors of the angles between the lines
represented by the latter equation. {C.)

4. (i) Find the equation whose roots are the cubes of the roots of
Bra(x+x+D=0.
(ii) Find the values of a such that there is & pair of roots of the given
equation whose product is the square of the third root.

8, If w=y-+iv, z=x+iy are complex numbers connected by the
relationship w(z+1)=z- 1, find the loci described in the Argand diagram
by the point representing w when the point representing z describes: (3) the
line x =0; (ii) the circle |z+ 1] =1.

6. If |x|<1, find the coefficient of x* in the expansion in ascending
powers of x of (a+bx+exDf(1-x)%. Determine a, b and ¢ 80 that this

expansion reducss to », #*x" and show that S nj2r=6. (N.)

fi=1 g=1
7. The centre of each circle belonging to a family of circles is on the line
y=mx+c{c#0) and the length of the tangent from the origin to each circle
of the family is . Find the equation of the family of circles.
Show that the polars of the origin with respect to these circles are
concurrent, (L.}
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8. Find the eguation of the tangent to the curve xy=1 at the point
(¢, 1/1) and the equation of the normal to the curve 27y =4x3 at the point
{34, 24%). Show that just one tangent io the firsi curve, other than an
asymptote, is also a normal of the second. (L)

9. Evaluate the integrals:

@ f ]"“‘b‘, (i) f (x- DR-xPdx; i) f TPy

sin? ﬁ + 4 cos?d

1. Sketch the curve x =gcos? 2, y=asind ¢ (0515 ),
Calculate: (i) the area enclosed by the curve; (ii) the volume of the solid
of revolution obtained when this area is rotated about the axis of x. (N

11. A plane cuis a sphere of radius R in a circle of radius . A second
plane at right angles to the first also cuts the sphere in a circle of radius r.
The line of intersection of the two planes meets the sphere in the points A, 8.
Prove that if 42=3R? then the sphere described on AB as diameter passes
thiough the centre of the original sphere.

12. If fis a function of » where u=(x® + y*) tan™! y/x, prove that

of ar
* oy Y om0y,

PAPER S (5)

1. Prove that the circle through the mid-points of the sides of a triangle
passes through the feet of the perpendiculars drawn from the vertices to the
opposite sides.

AD, BE, CF are the altitudes of a triangle ABC and M is the mid-point
of AB. The circle on AMD as diameter cuis DE in A and DF in K. Prove
that HK is perpendicular to AB. (L.)

2. () Find the range of values of x for which [(x - 3)/(x + )| <2.
(b) If x, ¥, z are positive, show that

23+ Mz (2 + D+
and AR+ 22 (2t D+ y 4 2). (N

3. Solve the equations x-y+z=1, 2x—y+3z=4, dx-3y+(5—a)z=6,
when: (i) a=0; (i) a=0.

4. If o, B,y are the roots of the equation x®+ px +¢=0, find the equation
whose roots are o? + By, B%+ye, Y2+ «p.

5. Show that the circles represented by the equation »®+ ¥+ Dx+¢=0,
where » is a parameter and ¢ is a positive constant, form a coaxal system with
real limiting points.

If £>-1, find the equation of the ellipse with foci at the limiting points of
the system and with eccentricity 1/v/¢. A diameter of this ellipse touches
the circle with parameter %, and the conjugate diameter touches the circle
with parameter »,; prove that (A2 - edis®— o) =(e— )% (L)
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6. Sketch roughly the curves $;=d(x - 1#+y2-4=0, §;= 2 —dax=0,
0<a<2, marking clearly their points of intersection.
What curves are represented by the equation §) +15,=0, where Ais a real
parameter ?
Find the rectangular hyperbola of this system and sketch it in the cases
O<a<% and 3 <a<2. (L)
7. IF (1 + X =y + % + €32+ . . . +enx", show that
e atry  O<rgn-1)
If for some r, %= 2¢,,4€r_q, Show that n=3.

8. () Evaluate f ’ +(2x - ) dr.
1]
(b} If y =(x-+1¥(x - 1)}, where a, b are constants, prove that
4V e+ 1P - Dl (N)

dx™
where f,{(x) is a polynomial in x of degree not greater than #.

. 33 T
9, If C,— f " cos ¢dr, S,=] rtsin¢dr, where n is a positive integer,
il i .

prove that: (i) C.+nS,_=x"sinx; (i} S.-nCh 4= —x"¢os x.
Show that fx‘ sin x dx =n* - 12t + 48,
1)

10. Prove the formula tan ¢= rdf/dr.

Show that for the curve ## =a* sin 28 we have ¢ = 20, and sketch the curve.
Two points P and @ on the loop of the curve in the first quadrant are such
that the tangent at P is parallel to O and the tangent at O paraliel to OP.
Show that the area of the triangle GPQ is 44® and that the chord PQ divides
the area of the loop in the ratio (I +24/2): 1.

11. The ends of a straight line lic on two fixed planes which are at right
angles to one another, and the straight Jine subtends a right angle at each of
two given points. Show that the locus of the mid-point of the straight line
is a plane.

. _ d*,_v‘
12. (i) If 2+ % =3xp, find T

Gy If (x/@)+ (vibys + (zfe)* =1, find g :

PAPER 5 (6)

1. (i) If H is the orthocentre of the triangle ABC, show that
HA*+ BCE=HBY - CA:=H(?+ AB",

(i) If P is a point in the plane of a triangle ABC such that
PA®+ BC? =PB®+ CAY, prove that CP is perpendicular to A8,
L
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2. Findtherange of values of ¢ for whichthefunction(x® - 1)/{{x ~ 3{x + ¢)}
assumes all real values for real values of x.
Find the possible values of the function if =3, (L)

3. If x+y+z=0 and none of the numbers x, y, z is zero, and if

a£2+2._', b=£+§, c=_x.+2.,,
zy x z y x

prove that: (a+b+c=-3; (i) abc=a?+b%+ 2 -4 =5- 2(bc r ca + ab).

(N)
4, Prove that
i1, x, x* ¥+ p211=0,
L, y, ¥ Pzix
il, z, 2%, z*+1xy;
Lt & *+xyz. ()

5. If the line x+ 2y =5 meets the lines x¥+3xy+y2=0in L, M, find the
equation of the circte on ZM as diameter. If the equation of this circle is
written §=0, and it meets the lines x2+ 3xy + y?=0 again in P and Q, find,
by considering the equation S+ux¥+3xy+y%=0, or otherwise, the
equation of PQ.

6. Find the three roots of the equation 8x*=(2 - x)*, expressing each in
the form g+ ib.

7. Show that, in general, a circle cuts a parabola in four points. If these
points are A, B, C, D, show that the lines A8, CD are equally inclined to the
axis of the parabola.

Deduce that if a circle touches a parabola at P and cuts it at ¢, R and if
U, ¥ are points on the circle such that OU and RJV are paratie] to the axis
of the parabola, then U7V is paraliel to the tangent at P, (L)

8. Show that the sum of the first # terms of the series
cos a+cos (a+ 20 +cos{a+4b)+ . . .
is cos [@+(n~ 1)b] sin nb cosec b.
Hence, or otherwise, find the sum of the first n terms of the series
cos?Bcos O+ cos® 2 cos 30 +cos? 3 cos S04+ . . .

9. If y=x*sin x, prove by induction that
d®y Al i .
Jres =(— 1)*{x®sin x — 4xn cos x — 2r(2n - 1} sin x}.
Deduce the 2nth derivative of x® sin 2x. L)

1-acos®

1 e db-x i =1,
10. Prove that A 142ac050+azd = or 0 according as |a] < or =1

N

11. The groove in a rope pulley has a parabolic cross-section with the axis
of the parabela perpendicular to that of the pulley. The outside diameter
of the pulley is 24 cm, the depth of the groove 2 ¢m and the width of the
groove at the outer diameter 3 ¢m.  Determine the volume of metal removed
to form the groove leaving your answer as a multiple of .
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12. In a tetrahedron ABCD the lengths 4B, AC, AD are equal and the
angles CAD, DAB, BAC are right angles. The foot of the perpendicular
from A to the plane BCD is P. Prove that the distance of P from each of
the lines AB, AC, AD is the same and equal to two-thirds of the distance of
A from each of the lines CD, DB, BC.

PAPER 5 (7)

1, If I, L, I are the excentres of a triangle ABC, prove that:
() Ll=ccoseciC,
GiY Lig: Lhy: Ll =cos 341 cos §B: cos 1C;
(iii) the radius of the circle J;fl3=2R. (L)
2. Solve the equations:
@) G2+ DOA+1)=250, x+y=35,
(i) 28— 3% - 2xd4 Tad + ¥ - 3x =1,
3. (i) If v and w are real numbers, prove that Vi wiz v+ w)
@) If u, v, w are positive numbers satisfying the relationships
utv+w=3, wd+vi+nt=6,
show that ws 1+ 4/2.

4, Prove that abc is a factor of
i+t 4t at
PB (e at B
Poet & (a+ B
and show that the value of the determinant is 2abc(a + b + ¢)%.

5, By means of De Moivre’s theorem, express sin 86/sin0cos® as a
polynomial in X, where X =4 sin® 8.
Hence, or otherwise, solve the equation x8— 6x*+10x*-4-0,

6. (&) Find the eguations of the two circles which pass through the point
(2, 1) and touch both the coordinate axes. What is the other
point of intersection of the circles?

(b) Find the radii of the two circles which touch the x-axis and pass
through both the points (1, 3) and (2, 4). (N

7. The point (&, k) lies on the curve x2—)* =4®. Show that the chord of

the curve xp =¢® which is bisected by the point (&, k) is normal to the curve
x2-yt=n?

8. If x>1, prove that
xi~1>2xlog x>4(x - 1)~ 2 log. x. (C.)

9. Prove that f' 1(8) 6 — f -0 48,
13} i)

]
- 3 3 - (i ' :
Evaluate: (i) [(oos 8+ cos® 0+ cos® 0) 48; (i)  Tsin® 0. (L.)
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Hin
10. If I, , - f X" sin* x dx, prove thal
1
Hgfm, = ﬁ(ﬂ - ])[Hi, g~ ”f(ﬂf - l)[m-gv Mo
Calculate /y .. (0.C)

i1, A circular disc has radius g and O is a point on its circumference; at
any point P of the disc the surface density is uOP. Find: () the mass;
(i) the position of the centre of gravity of the disc.

12. AR is the shortest distance between two skew lines AC, BD and the
distances AC, BD are equal. Prove that the line joining the mid-points of
AR and CD cuts both these lines at right angles.

PAPER § (8)

1. The altitudes of the triangle ABC meet the circumcircle again in
L, M, N. Prove that the triangle formed by the Simson lines of L, M, ¥
with respect to the triangle 4BC has its sides paraliel and equal to those of
triangle LAY,

2. (i) If the roots of @x®+ bx+c=0 (a>>0) are « and B, show that for
sufficiently small values of x

ot (__ x)n
log, (- bx + ex®y=log, a— 3 T (2" + f*).
=1
(ii) Find the sum of all the products, two at a time, of the odd numbers
ir the first 2 natural numbers, ro product to consist of repeated
numbcers. _ (L.)
JHx+y+z=0 (g-bx+ar+@+Mz=0, (a-6Pxt+ady(@+b)Pr=0
and x, y, z are not all zero, prove that b=0,
4, (i) Show that the equation of the tangents from the origin to the circle
x4 324 2+ 2y + =0 is (gx+ ) =c(x? + yH).
(i) Prove that the radical axes of a given circle with each circle of a
coaxal system are concurrent,

5. (1) Find the square roots of 163 30i.

(it If z=x+4iy and the point (x,)) representied by the complex
number z moves round a c¢ircle with centre the origin and
radius 1, what is the locus of the point which represents 2+ 7z?

6. Express x2-- 21 22 and x3-38+ 2% in terms of x+y+z, yz-+zx+xy
and xyz.

Hence solve the equations x+ y+z=2, x2+ 3%+ z2=126, 3+ 3+ 2%=38.

(0.CJ)

7. Show that, if the normals at Py, P, P, to the parabola y2=4ax meet

at a point, then G the centroid of the triangle P,.P,P; is on the axis of the
parabola.

Show further that, if P,P, passes through the focus, the abscissa of P, is

cgual to $0G ~ a, where (2 is the origin. (N.}
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B If r is a positive integer and $,=1"+2"+ .. . +#f, show, by
considering the expression {1+ xy *1 - x"*1, or otherwise, that
(1Y —(erl) _ S, S, LS
7 L ETE L S T TR 7

d '
9, IF y =(1 + x® log, {(x + v/(1 + xB)}, prove that (I + x’)ai =xy+ 1+t

(=]
Assuming ¥ can be expanded in the form » a,x", show that
11

Gp =@y =@y = - - . =iy, =0.
Find the valves of a; and a, and show that, if #2-1,

2.4.6... 20-2 1
n—1<- 7
Gt == g T

1, (i) Express 31_‘_"_t_17.x+8 in partial feactions.

(x+ 1)

x{x+1)

(ii) Evaluate ['(I_Tﬁzm dx

11. The coordinates (x, ») of a point on a closed curve are expressed in
terms of a parameter ¢/, Show that the area enclosed by the curve is given

by the integral 4 [ (x jr ix) dr taken betweent suitable limits.

Prove that the area of the curve x=cos - 3sin ¢, y=2cost+sin¢ is Ir.

(L}

12. The functions u, v are defined in terms of the variables x, y by the
equations x=u-+v+uv, y=ui+13

auy v u ay dv
Prove that R A ron s and obtain expressions for — By ox Gy
B Bv dy du 1

Show also that 0.C)

@xay bray 2(? u)(v+u+l)

PAPER S (9)

1. AD, BE, CF are the medians of a triangle ABC and FE is produced
to H so that FE=EH, Prove that DH =BE, that AH —=FC and that E is
the centroid of triangle ADH.

Hence, or otherwise, show that the area of a triangle whose sides are equal
to the medians of triangle ABC is three-quarters of the area of the latter
triangle.

2. The bisectors of the angles 4, B, C of a triangle ABC mcet the opposite
sides in X, ¥, Z respectively. Prove that the ratio of the area of triangle
X¥Z to the area of triangle ARC is 2abe: (b+c)c +ala+ b), where a, b, ¢
are the lengths of the sides of the triangle 4BC.
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3, (i) Find a quartic polynomial in x, with integral coefficients, which
vanishes when x=+/2+ +/3. FPor what other values of x does
the polynomial vanish?

(ii} The remainder on dividing a cubic polynomial in x by x2+1 is
x+1, and the remainder on dividing the cubic by x+2 is 4.
The sum of the coefficients of x, x%, x®is 10. Find the polynomial.

(L.)
4, Prove that
xaaa b ¢ d
b ¥ b b (x—a)(y—b)(z—c)(r-d){l+— ;3+}' Fb+é_';-|'r' _—d}
cecIc
dddzr )

5. A circle of given radius moves so that the radical axis of the moving
circle and a fixed circle always passes through a fixed point. Show that the
Jocus of the centre of the moving circle is a circle with centre at the fixed
point.

6. Show that, if » is not a multiple of 3, ¥+ 1 +(x - 1)* is divisible by
e xa 1l

7. A rectangular hyperbola is cut by a circle in four points. Prave that
the sum of the squares of the distances of these four points from the centre
of the hyperbola is equal to the square of the diamcter of the circle. (L.}

sin® x

8. Evaluate: (i) f 1+ cos? x ey (ii) f’ @ M dx,

9, Sketch the curve 2 =4® cos 26 and find the area of a loop.

Show that i, the angle between the tangent 1o the curve and the initial
line or axis of x, is given by i =36+ 3= and determine the values of 6 for
which the tangent is parallel to the initial line. Verify these values by using
the Cartesian equation of the curve.

10. )f p is the radius of curvature at the point P of the ellipse
a%at+ bt =1 (a>=b), prove that p=(6%a) sec® $, where ¢ is half the angle
between the lings joining P to the foci of the ellipse. (N.)

11, Find the condition that the sphere x®+ »®+ 22+ 2ux+ 2vy + 2wz + d=0
may touch the plane /x +my + nz=p.

Find the equations of the two spheres which pass through the points in
which the plane x+y-+z=1 cuts the axes and also touches the plane
X+ y+2z2=13. (L.)

12. The area of a triangle ABC is calculated from the measured values
a, b of the sides BC, CA4 and the measured value %0° of the angle C. It is
found that the calcnlated area is too smail by a small error z and that the
true lengths of the sides are o — x, 5 — ¥, where x and y are small.  Show that

0 2 + 6
the error in the angle € is approximately 18C \/( z+;;b x) degrees.

PAPER S (10)

1. Prove that, if P be any point on the circumcircle of a triangle 48C
and PO be drawn parailel to BC to meet the circumeircle again in Q, then
24 is perpendicular to the Simson linc of P with respect to the circle.
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2. Pis a fixed point within a circle, centre O; AR is any chord parallel
to OP. Prove that AP? + BP?=constant.

3, If f(x) is a polynomial in x and =z is a root of f{x}=0 and of f(x)=0,
ghow that « is a multiple Taot of f(x)=0.
Hence, or otherwise, solve the equation dx® - 122 + M4 12x+4=0,

4, Find a formula for the area of a triangle with vertices (0, 0), (x;, Yih
(xﬂi J’e)-

The sides BC, CA, AR of a triangle are divided in the same ratio k: 1 by
points P, Q, R. Show that the triangles 4BC, POR have the same centroid
and that their areas are connecied by the result

APQOR: AABC=(-k+1)i(k+ 1%,
5, P represents the complex number z =x+iy in the Argand diagram.
Ilustrate the positions of the points P,, P, which represent :—: and - 12, where

Z=x- iy
Show that for all real values of ¢, |z~ it| + |1/z~ if| = PPy

6. Find the sums to n terms of the series:
1 2 3 #t
(i) ;+;8+;§ + ... +F,
(i) @ cosB-a®cos20+ascos 30+ . .. +(-1)""1a"cosnd;
1 1 1 1
() T3 3*3 3735257 tamiDm+d)

cos (sin x)+sin (Il —cos x)—1
C . x‘ =3
8. Prove that the equation of the chord of the ellipse x*a®+3%/b%=1
whose mid-point is (r, k) is (x - DAfa®+ (v - k{B*=0.
A variable chord PQ of the ellipse passes through the fixed point X (x, B),
inside the ellipse. Find the locus of the centroid of the triangle OFQ,
where O is the centre of the ellipse. {C)

7. Prove that lim
=1}

9. Prove that [ "f(x) dx = fu "fla-x)dx, and hence show that if
f(@-x) =), then f" x fix) dx =}a f fex) dx.

Prove also that ]: Flx)dx=a Fla) - f: x F(xX)dx and deduce that, if
Flla- x) =F'(x), then f: Fx) dx = Ja{F(a)+ FO)). (0.C)

10. Show that the area of a loop of the curve x =g sin 21, y=asin ¢ is $a®

11. 04, OB, OC arc threc mutually perpendicular straight lines; 4D is
the perpendicular from A to BC and OE is the perpendicular from O to AD.
Prove that OF is perpendicular to the plane ABC.
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12, If the function f{u, ¥) becomes F(x, y) when n x*+ ¥%, v=y/x, prove

aF  aF & .. 8F 8
t = = = —_
hat x i t? iy 2u " Hence prove that, if x T oy 0, then F(x, )

is a function of y/x only,
By putting ¢ equal to x®f, prove that if x%»ﬂv gf=ngb, then ¢ is a
homogeneous function of x and y of degree . (0.C.)

PAPER § (11)

1. Two triangles are determined by the given values of 2, &, 4. If O, O
are the circumcentres of these two triangles and H,, H, are their orthocentres,
prove that H H,=20,0, cos A.

2. If A4 is a point not on the line BC, show thai the equation of the circle
on AP as diameter, where P is the point dividing BC in the ratio k: 1, is
53+ kS, =0, where 5;=0, 5,=0 are the equations of the circles on 4B, AC
as diameters in the forms in which the coefficient of x* and »® isunity. Hence
show that, if a transversal cuts the sides BC, CA, AB of a triangle at P, O, R,
then the circles on AP, BQ, CR as diametets have two points in common.

A If the sides of a parallelogram are parallel to the lines
ax®+2hxy-+by*=0 and one diagonal is parallel to Ix +my=0, show that
the other is parallel to (A — am)x + (bl — hedy =0.

4, Given that 3ax+by+c2d={a+b+cMx+y+2),
and al+bm+emy=(a+b+oXl+m+n),
prove that a=b=c¢ or x(m-m+yn-D+z(l-m=0. (N.}
5. () If the equations x*+ax+5=0, x*+ cx+d=0 have a common
root, show that (b - d)*= (ad - bcla - )2
(ii) If the eguations x+pat+gx+r=0, x¢+rd+sx+1=0 have a
double root in common and #=0, show that p=r and g=5. (C.}

6. The complex numbers z=x+iy and w=u+iv are connected by the
equation wz=z%+ 1. Prove that if, in the Argand diagram, 7 lies on the
straight line y=4Ax, &£ #0, then w lies on a certain hyperboia and that the
branch of the hyperbola on which w lies depends only on the sign of the real
part of z.

7. A sequence of numbers a,,a,, @y, . . . is such that a4, — a, =br* (r £ 1).
Show that @, can be expressed in the form p+gr®, where p and 4 are
independent of n, and find the values of p, g in terms of a,, b and r.

Verify that the numbers 1, 4, 10, 22 begin a sequence of the above type.
Obtain a formula for the nth term of this sequence and find the sum of the
first n terms of the sequence. (N.}

8, By considerations of area, or otherwise, show that if f{x} increases
strictly with x, then fin- D<| f(x) dx<<f(n).

na1

(i} Using the case f(x)=log x, show that if #>1, (n— D! <yl " nl;

(ii) show that ifn>l,0<l+;+%+ . +£-Iogn<l.
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- dly L, diydy
9. Prove that if y =log. cos x, then ﬁ-% 2 o dx—o.
Hence obtain the Maclaurin expansion of 10g, cos x as far as the term in x*,
Deduce the approximate relationship log, 2= %71 - n3/96). (0.C)

fa
10, Prove that f Fx) dx= f {F(0)+fla— )} d.
(1] L1}

X sin x dx _ T
(1+tan® xsin®x) tana (C)
11. A function of z, F(z), is written as a function of x and y by means of
the substitution z=x47y. Given that F(z)=F(x+iy}=ulx, y) +ivx, yh
where u(x, ¥} and ¥(x, ) are both real, prove that

If Q<e<<nf2, prove that f'
b V'

R )
éx oy ay ox
Find u(x, ) and w(x,») when F(z)=e* and verify the given relations
between the partial derivatives of w and v. {(0.C}

12. 48 is the common perpendicular of two skew lines AP, BQ. If His
the mid-point of A8 and A the mid-point of PQ, prove that HM is
perpendicular to AB.

PAPER 5 (12)

1. H is the orthocentre and O the circumcentre of a triangle ABC. AQ
meets the circumcircle again in P. Prove that: (i) HP passes through the
mid-point of BC; (ii) the triangles ABC, AHP have the same centroid.

2, Find the maximum and minimum values of the function x + 2y when
x, ¥ are subjected to the restrictions

Sx+2y-1720, 4x—3y-9<0, x+5y-31<0. (L.)
3. The equation x¥ - px® + rx + s=0 has two pairs of equal roots. Prove
that 8r =p3, 64s ~p4, and that the distinct roots are p(1 1-+/3)/4. (C.)

4, Use De Moivre's theorem to prove that the roots of the equation
x"=(x — 1), where n is a positive integer, are

Hi+icot{rmim)}, r=0,1,2, ... (-1}

5, Find the equation of the circumcircle of the triangle whose sides are
the line 7x 4 my+n—0 and the line-pair ax®+ 2hxy+by*=0. Interpret the
result geometrically when am® — 2hlm + bI®=0.

6. Prove that four normals can be drawn to a rectangular hyperboia
from a general point P in its plane. If the feet of these normals are the
points 4, B, C, D, prove that: (i} each of the points 4, B, C, D is the
orthocentre of the {riangle formed by the other three; (ii) the circle through
B, C, D meets the hyperbola again at the opposite end A’ of the diameter of
the hyperbola through A.
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7. If §=0is the equation of a conic and # =0 is the equation of a straight
line, what Iocus does the equation S+ ku®=0 represent ?

The line x+p=1 cuts the conic 5x® - 6xy+ y*+ 3 =0 at the points P, 0.
Obtain the equation of the rectangutar hyperbola which touches the given
conic at P and Q. Show also that this hyperbola passes through the
origin. {(N.}

8. (a) Express in partial fractions with real irreducible denominators
6x/(x% - 1).
{b) Find the sum of the first » terms of the series
1+ 2%+ 382+ 4% 3+ | | |
If |x] <1, find also the sum to infinity of the serjes. (N
9. Prove that if a0,

-1 1
fsin(rrx“)dx+az[ X% cos (mx®) dx=0;
0 (]
1 1
fcos(nxa)dx-mfx«sin(nxa)dxml;
11 i

f "+ -+ atEx39) sin () dx g, (L)
0

10. Skeich the curve with polar equation r ~1+ cos 26.
Prove that the length of the curve corresponding to 0€9< 2~ is
4
8+ﬁ log 2+ 4/3).

11. A surface is formed by rotating an arc of a parabola about a line in
its plane perpendicular to its axis. The height of the resulting barrel-shaped
body is » and the radius of either end is @ and of the middle 5. Show that
the volume of the body is fsmh(3a® + 4ab + 8b9).

12, (i) Prove that, if u=x"f(Y, Z) where ¥Y=y/x, Z=2z/x, then

85 +
, éu o Su .
Find the values of x a—x+y $+z % when:
() u=Tlog (x®+ 3% + z%);
¥+ 22
i) u={x3+p+ 29 tan™! (-—xz— )

{ii) Show that V' = 4r* cos (n0 — o) satisfies the cquation
#v, 2y
ax? " gyt

Bu, o8 _
ay " ’

=0, when x=rcos 8, y =rsin 0. (L)
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EXAMPLES la (Page 3)

L 1226 cm. 2. 3464cm. 3. (D) (3 1) (i) Ga 3b); @D (x, 3.
4. 9695cm. 9. Yes. 10. (1,00 12 4485 em. 16, 45° 14",

EXAMPLES 1b (Page 9}
2. 170 cm, i1, 325 cem.

EXAMPLES 1d (Page 18)

3 BL:CL=6:1. 4, 3:10.
9, A0:0D=5:9; CO:0F-=11:3. 14, 25:9.

MISCELLANEOUS EXAMPLES (Page 24)
22, AQ: OB=3:4. 40. The centroid of the triangle ABC.

EXAMPLES 2a (Page 29)

1 x4+ 10:3 + 3527+ S0x + 24, 2. a4+ b+ d4c® - dbe + 4oa — 2ab.
4. () Sa-b+ob-a-¢); (i) (3y—Txt+3xp+ 3%,
(i) @ - v3ah+ 0Dat+ v3ab+ 69, (v} Qa+B}(4a® - 2ab+ B2 - 2).
S, 32 - 80x + 80x% - 40x% + 10x1 — &5,
6. —2a®+ b+ - 2be— 2ca - 2ab).
T, 18- P+ 822+ 3x%2z - )+ 3pAx + 22) + 122%(x - ¥) - 12xpz.
8, (i) 24+/2; (i) 2d4/2.
10, () v3I+42; (i) H+/2+/6-2% (iii) 331+ 34+ 1),
11, () 3(a2+ 52+ D — 2be +ca+aby; (D) Aa®+ b4+
12, (x2-2x+3INx*+2x+3).
13, (2x-Wx+y); (Gx-y- Dx+y+5). 14, 178+/3.
15. G) (c-Dx-2); (i) Qa+35)a—-b). 17 {a+B)(a®+ab+b3).
18. (i) (x-3)% (i) (a+3 - blafa*+9+ ¥¥/a% - 3a+ b+ 3bfa);
(i) (x%- v 2x+ DXV + v 2x+2).
20, - [+ ¥+ 23+ (a+ D+ y+2) + 3ably— 20z - xHx - »).
21, (i) 4; (i) 18. 22, (x®- 3x+ 4+ x=1).
24, (Y 0; () -1, 26. 3n(n+1).
27. () (a® - v/3ab+ 3P+ 4/ 3ab+ 367,
(i) 2a®+ 2ab + bD(a® — ab+ B2}
28, WV2-x + V2+x .
2R/ 2x+ 1) T Iy 2+ 4/ 25+ 1)
31, [a+b-c—-2v/(@b)fa+b-c+2v/@b)]. 13, 13.
in

30, xt+ 1.
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EXAMPLES 2b (Page 34)

1. -720. 2, 2t x+3. 3 (x-2(x+ 262t~ 3x-2).
4 a=3, 5 & +db+a*P a1 B,
6. a=3. T. x-2.

B (i) e+ 1)x-2X2x-3); (i) ~(b-c—aXa-b).
9. a=3 b=-25 (x+2x-Nx*+4x+1).
10. (i) 2x-y; (D x-3. 12, ¢=4 -4,
1 () e+ 2 +42x-1); i) (x - D%+ 2x+3);
Gii) (a+2b)(20%+ab+ 59,
14, x*—x+3. 185 af-x-1. ‘
16, () ~(b-cHe-aXa—-b); (i) (b-eXe—~a¥a-b);
(i) (&— e—aXa-bla+b+c).
1T. =5, b=-17, c=2, 19, (x— DO +Hx+ DO+ 3+ 1)

20, (i} 0; (i) (a+ b+ eXbe+ ca+ab);
S(b - cXc - aXa - B)a + b4+ ¢E - be - ca— ab).

21, 2+ 1. 23. a=-1, b=—4; (Z+2r-D{xt-x3+2x2- 7).
24, (i) 3abolb+ e+ aXa+ by, (ii) 80ubc{a®+ b2+ D).
25, (2x- 10+ x+3). 26. (- M z—-xx-yXx+y+2).

EXAMPLES 2¢ (Page 36)
3. pig. 5 x=2, y=—% z=% 6 £
7. x=%a, y=%b, z=%c¢.
& z=xy/(x-».
1L () x=9,y=152=20; (i) x=h y=hz=% x=~-by=-hz=-%

12, %% 15, x=a, y=b, z=c.

EXAMPLES 2d (Page 41)
2. (@) -d4<x<d; (i) —%>x>Ss, 4, A=16. 5. 8%
6. —12. 9 Positive, 10. () 1=x=3; () 1-1/v22y21+1/v2.
11, Min. 4» Max. 3. 13, x=3, y=2. 15, < function< 3.
16. 00 <21, 20, Values =0 and «<4. 22, 226,

EXAMPLES l¢ (Page 44)

L.l _4 . 9 | - S
" 2x+1) x+2 2Ax+3) x x-1 2x-1
L 2 4-x
TOx+1) 3x+12 A+
1 1 3 2
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s 12 2 2
x4+ 2P Ox+20 2MNx+2) 2Wx-1)
2 1 .1 1 1 2 x-D
R R TS | T 3G AT x+ )
8 +4+_..]g _.._l..o__ P E__. + !___.. 9 _..L._ _ . ':H_l.
A T T I - 1P (k- 0 L gy R |
1 3 15 35
0 - m A e
Ax—-1) 2Ax-3) x-5 2Ax-7)
1 6 12 8 x-1
W R (2P T (e 2P L. o
o6 3. 3 3 3 3
TE-D (k-2 Ax-2P Mx-2F Bx-2) Bx
14 l_._ +__?.___ + _._L_...._l‘_‘ ..... +_.1_4x___1§..
" Hxe- 1% 9x—1I¥ 2Ux-12 8l{x-1) 81(xE+2)
15 11 ox-3
T 3x+1) Mx+1P AP-x+1
2 1 2 1 2 1 2-x x+1 2x-1
L v S i A R W | 7. it e
P S N S B 2o U
“6x-1) 6x+1) x+x+1 xP-x+1
EXAMPLES 2f (Page 47}
1. x=+4 2. x=10. 3. x=-1, £3.
4 x=-2, %3 5 x=4, 6. x=-1, -1, 33+ v5).
T x=21 H-3++/5: R ox=-2.
9. x=0,9, 10, x=-1, ~1,-1, 4 2.
11. x= - 1; other roots compiex. 12. x =0, 4; other roots complex.
13. x=—=-4, =2,2, 3. 14 x=-1, -2
15, x=-2,3,4(1++/33).
16, (i) x=a~+b+c, b+ec-a; (i) x=3 y=-1; x=-1, y=3; other

roots complex.
17, () x=15; (i) x=%+v% 18 x=0,1. 19 x=-2, -2, 3++/5.
20, a=12, b=16: x=-3, -2, —1,2; other roots complex.

2L x=5,y=7,z=4;, x=-1p=-3,2=0.
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MISCELLANEOUS EXAMPLES (Page 48)
L 33 - 2y be. 2 (@) 2Aa- DB +4a+ Ty, (i) (x+y-2)x-y+2).
3. (x4 xy+ 3002 - xy + 9.
%, (i) Positive for x<3 and x>>5, negative for 4 <x<5;
(i} 32 Expressionz §-

39 1 40
85(3x 1) 45(x - 2) 15302x + 5 5) |
. 3 5 1
i) [ S A, R S

2(x+ T 2+ 18 &x+ 1 4+ D)

8 (i) (- 2Nz x—-pUx+y+2) ) (r—2Mz - 200x - yyz 4 zx + xp).
9, X*-2 X3-3X, X'-4X%;2,
10, () x=% 3, H-1Li24/2)

(i) x=2,y=3: x=-2,y=-3; x=3y=4; x=-3, y=-4.
11, (i) negative, 12, @+ b%+ % =2¢ca.
13, x=-1, 2242, 30 £/9).

14. ) 2-v3 (@D 44343 2\2/5-1-2\/15

Q4 /x+ /Yl +x-y- Zl\/x)
{(l+x-yP-4x

7. (D)

(iii)

15, x=3, y=2.

16. () Qa®-ab+502at+ab+8%; (i) a=-4, b=14
t . 8 19 8

Ix-12® Hx-1P 2T7x-1) 2Ax+2Y
Sl — 177273 — 1(9n? - 21 + B)1.

19. () x=-2, 33L/5); @) x=1-3v/7. 21 2z 1.

17.

1 L |
- e . . A=3 -7
2 x=z-). 24. 2—x+§(x—l)' 25 3

26. (i) x =10; (i) no real solutions.

27. (o~ bXb - c)(c - a}3(a + 8% + ¥ — (be + ca+ ab)].

30, (i) 44/3; (i) (a+ 5+ b2

32 0 (a+Bb+e+ra), (i) (2xF— 17x+36)(2x% - 23x + 36).

33, x=-1,2, 1++/5. 3. x=09397, -0-1737, - 0-7660,
38, a+c=0; @) x=a++/(a®+b).

36 -3sys-2, 2€y<3. 39, (it) »=6, - 3

42, a=0, b=0; a=-1,b=-1; a=32, =13

43, 6x% — 151411023, M4, 2-x+1.
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EXAMPLES 3a (Page 53)

1. 10. 2 -2 3. 36 4. 6. 5 0.

6. -8 7. 3. 8. 8. 9 0. 10, -8

11. 4. 12, 0. 13. B2 - gt 14. - 5xy. 15. o+ b2
16, —6xy. 17, -abla+d). 18. l+yz+zx+xy. 19 a*-a*-a*+a
20, 0. 21, (x— 1Y% 2. (a*- b3 23. (b-a).

EXAMPLES 3b (Page 58)

1. 23. 2. 418, 3. 204, 4, 267. 5. 7760,
6. 176, 7. 0. 8 1. 9, 0. 10. 0.
11, 0. 12, 0. 13, - 6xy. 14. (a— bR(B* - ab).
15, -3b(a®-bDa-28). 16, -(a®- 1% 17 xypz{x-y)(y-z)z-x).
18. 0. 19, —-x3+17x% - 43x+27. 20, 344
21, -{a*-1% 22, 0. 25, x=+2.
27. (i) dabe; (ii) 0. 28, 36x+96;, x=-%

EXAMPLES 3¢ (Page 63)

1, abld - a). 2, 20xy. 3. (a-b)a+b).
4. (a—ba+*H1-2a—26]. 5. 18xyz. 6. 280abc,
T 3y - XXy + x) 8. (- b¥b~cXc—a). 9 Bxyze,

10, —66xy=t. 11, -2(l+ cHb- )b+ ).

12. (i) —-2; iy -2, 13, x(x+ Di(x— 14 - x).

4. be+ca+ab-{P+ 5+ ).

15, be-f2, ca-g% ab- I® gh-af hf -9, fz - ch.

17. () x=1,1, 4; (i} x=3, —44+21; (i) x=1, 8++37
19. (i) dabe; (i) 2(x— y)ix®yL 20. (i) A; (i) 34,

21. 3z{y - x). 22. -{a-bla-a—db-cXb-d¥ec-d).

EXAMPLES 3d (Page 70)

L x=-1y=1 2. x=1,y=1 3 x=-1,p=3
4. Equations inconsistent. 5 x=3¥y=-%

6. Equations not independent. T.x=7.y=-2

8. Equations inconsistent. 9, x=4,y=2.
10. Equations inconsistent. 11, x=f, y=1, z=2.

12, x=3, y=T7, z=-4. 13 x=3, y=-2, z=12,

M, x=p=z=1. 15. Equations inconsistent.

16, x=0, y=-1, z=4, 17. Equations not independent.



376 ANSWERS

18. Equations inconsistent. 19, x=13 y=%% =17,

20, Equations not independent. 21, Equations not independent.
2.0 3 -9, G- i ) -1 ).

23, () 2:11:7; (i) -7:5:11; i) 3:19: 26.

24, (i) A=-1; (ii) no valaes.

25 (Y e=1; (D) wp=1; (i) g=3(~5++/89). 26. 3.

2. @) (@ r=-1, (B) h=3; (i) (@ h=-2,3» (5) none;
(ii) {a} »=-8, 2, (& none.
h-0)k-o) = k-ck—a) = (k-alk-b)
B X~ ha—o Y- Hb=a) 1T (o a)e =)

-3 B -5u+3 Th—11u+5

2. = y= 00— a) y Z= 054 (iy »=4, p#3;
3a-b-2ab+26 3b-5q 654+ 2b-5ab

M = 5+ 5a6-a) P T 3+5006-a °THii+ 500G -a
{i) inconsistent; (it} not independent.
32, Equation (iv); 4y-z+3=0.

o+D 1 (2102
BAAEL x= S YTy T

pendent, (i) inconsistent.
M, (@) x=-1, y=0,z=3, t=-2; (i) x~3=y, z=-85, t=-1.
35, 2 =3, 3(— 1347265}, 3. a=-3 b=b c=—Fpr d=-§

(i} equations not inde-

EXAMPLES 3¢ (Page 75)

2. (D r=-8,1:2; {iiy x==+4; 1: £2;

Gii) x=2, ~1; 1:-1,1:2; {iv} »=0, +£2; 1: +2.
A () pP+gi=0; @) 3/-2m=0; (i) ab=0; (V) (@a-DB+1D=0.
S (1:1:-1; (i) 6:-13:-17;, () ar—mg:r—q:n-n.
6 () —a+4b+T7c=0; () m?-Im+ ni=0;

(iif) (2~ yegy) - (F12p ~ Xazy) + (XY — xa¥) = O
8&3=3, -1, x=-3y=3 x=by--%
9. abe+ 2fgh - af® - be? - cf=0.
10. (i) »=3; (i) »=2, %; iy »=1, 4.
1M o xipiz=1:2:-3; a:b:c=1:1:1.
12. (i) 1+2abe-bc-ca-ab=0; (i) l+qr+rp+pg=0.
14, |ay by ¢|=0.
a; by ¢

1 -¢ 1




ANSWERS 317

MISCELLANEOUS EXAMPLES (Page 77)
1, x=5 y=32, 2=~ 1
4. () (@a-Db-cHe-a), (i) (a- B)b-cHc—ala+b+c)
5, x=20+ 1)JO - 1), y=30- 2~ 1), z=3(—1); r=1, inconsistent.
6. (i) x=§, -2, x=a,b 7. 1+hc+cat+ab=0,
B. x(x— 1}x+11); x=0,1, - 1L
9 x=-a+bte,y=a-b+c, z=a+b-c.
11. (D 1/3%435%; (i) 2Aa+b6+c)P 12, -2
15. Equation (ii); constant term - 1. 18, 1+a+5+c. 19. x=41.

21, (i) x=-3, y=3/(1-k) z=(1 -4k}(1 - &), (i) oot independent;
(iii) inconsistent.

~(a-bXb - cie - afa + b+ o).

L (D) x=3, 3146 (i) x=90, -1 26, t(af-be+cd).
. — 2abcla+ b+ o)[(a- b +(b-c)+(c—all.

L h=3; 1:1:-2; %=5; 3:1:-4; A=-8; 6:2:5

3, a=1, o, 0% where w?=1.

32, — b4 yA b o 1002+ 24 - 822 162 — 4,

3. () (@rbterdla-b+c-dila- o)+ b-dP}
() —(x-adx-0x-c)a-b)b-cMe-a¥x+a+h+ch

M A=il,2

2 8RR

37 x= dih - ¢) oy dic—a) ,
X G-Fr-cprc-ar T @b b-Pric-opF
dla—b)

-t -rrc-oar
EXAMPLES 4a (Page 83)
1 () x+dy=19; (@) dx+5y=8; (iii) x+y+4=0; (V) x+y=a+bd.
M55 )G D (-1914; ) (-3 -
5. (D11 (i) 3 (V) 174 0 5 (i) HA+D.
6. 2x — 3ty + 1) + 2aty1,— 0. 7. (atyty, at + fy).
8. () x=% (i) »—4; (i) x=2 9, x+ytty =clty + 1),
1L x(t2+ bty + 15— ¥, + £y =122 14. §§- 15. 204.



38 ANSWERS

EXAMPLES 4b (Page 87)

1. ) x2=32=0; (D) 222 - xy- 6y*=0;
(i) x*- P +3x-y+2=0 (V) 6+ xy -2 Tx+Ty-5=0.
2 () 2x+y=0=x-y; (i) x+y+2=0=x-p+2;
(i) x-1=0=x-p+2; (iv) Ix+y-2=0=x-2y+1;
v} x+1=0=y-3; (vi) 2¢—3=0=x+y-1.
3. G, GiD), (iv), (vi). 4 (-2, 1. 6. h=1.
7. @) A=3; (i) A=1; (i) A= -3
(iv) =2, () all values; {vi} do= 44, 2,
9 (2, -3, (-2,1).
10, () 3284 By +3y8=0; (1) Tx2 - 32xp + 22 =0;
(iii} xy - 2y*=0; (iv) 2x% - 2xy—y*=0;
) 9x®— ldxy+ 6y2=0; (vi) 13x* — 60xy+ 132=0.
11, xy-1232=0, 12, k=0, 13 /5.

15, x*—day+dy+x -2y~ 12=0, 47+ [2xy + 92 ~ 10x - 15y - 6=0,
3x2+ 16xp+ 5yt - Llx— 13y +6=0.

16. 42x% - 13xy— 423 - S6x+ 122y - 56 =0,
223+ 3xy - 28+ 10x - 15y - 28 =0,
1022 - 21xp— 10y - T6x + 132y 4+ 112 =0,

17, 6x+6y+1=0; 613+ 114xp +5559=0. 19 x%+)2-2y=0.
20, x*+ 2+ (x-2{x+my)=0; x+2y=1. 2 (-4 -D.
22. 2=0, % -5

EXAMPLES 4c (Page 91)

1. (Dtan12¢/6; (i)tan~'24/21; Gidtan'd: (v)tan?5; (v)tan-ld
2. (i), (i), @),

3. () - xy-y1=0; (i) 1132+ 6xy 11y7=0; 11x2~26xy - 112 =0,
4 A= i3, . %» 8. 33— xy—HA+9y_9=0,

9. a=1, b=2. 10. 3- 11. }-

120 X2+ xy -2y - Tx+ 10y - 8=0. 13, 7x*+8xy +yE=0,

4. B2P+ B =1; line is a tangent, 16, 2x®-xy-3yi=0.

18. 112 - 6xy - 1132 - 60x + 40y + TO=0.

19. o+ m®) + Agl+ fin + 1)=0.

z i,\/ (ﬂi}‘;")- 2. ) 1,2 @ (-1,0)
28, 2gx+ 2y + c=0, flax+ ky) =glfix + &)
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EXAMPLES 4d (Page 95)

1. (@) Tad-24xp+ 142+ 16x+ 12y - 50=0; (i) 2-Bt+6x+9=0;
(iii) 7xT+8xy+3*-2x +4y-5=0; (iv) 1722 20xy — 42 =0;
(V) 5x2-4y2+ 8y-4=0; (¥D 8x2 — dBxy - 47y + 80x - 2y + 81 =0;
(vii) 3x2- 10xy +3p®—22x - 6y -45—0.

2, x=0, y=0; x+y-2=0.
3. 3x2- 10xp+3)2+28x -4y -20=0; tan! 3
5 (i) Sx+2y-2=0; (i) x-2y+4=0; (iii) 6x+8y+3=0;

(iv) y+1=0; V) x+2y+6=0; (vi) Sx+4y-T7=0.
6 (9, 1), (4,00 8. x-y-4=0. 12 g2+ 2=R+k%+2gh+2fk+2¢
13. (—4,4). 14, () x-y=1; @) F+pP-x+y+1=0.
16. (0,0}, x*-32=0. 17. (%-0), 92— 16p% - 12x + 4 =0.

18. x=0, Tx—24y=0.

MISCELLANEOUS EXAMPLES {(Page 97)
La=5 3.0 ©0; ()% 4 p=x+lz2v2. 5 (-1,
6. abc + 2l —af’ - bg®— chf=0; {(hf - bg)iab - 1), (gh - af}f(ab - K},
7. a=4, 4 8. 3x%+4xy=0; tan"l %

9, {40x; +xp+ ya— W) 4y H Y+ Xy — X9,
{3y + X+ ¥y~ Yah 30 +yo+ X - 2Dk

10. 2+ 3xp— 2%+ 5x+10y=0. 13 a=2; c==3. 14 (1, -2).

15. 3} 17, 2+ 12xy + 6%+ 18x - 12y - 39=0; tan™! £4/30.

19, x+3y+12=0; (-3, -3), (0, -4} 20, 60°. 21, A=p= —%-
_ - _o. (188 j2h-af

24 (-1, 30, bt Yy + ayt=0; (ﬁb—k*&mﬁ)

34, 24yt -3x=0. 40, 702+ M+ 3x— Sp+12=0.

EXAMPLES 5a (Page 103)
2. (D 21, outside; (i§) -3, inside; (iii) 4, outside.
4. () 4x+y-10=0; (i) 4x-5=0; (iii) Tx-9p+14=0.
5. Perpendicular bisector of AB. 6. 3x+2y-5=0.
8. 4x+ 3y~ 6=0. 9, (-1
16. c=-4. 18 20'(x- 2)+2p(B- B+ —c=0.
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EXAMPLES $b (Page 111)

L @A+ 1+0M3+3-20=0, A+ 55— 1 +p(2x- 1)=0;
@) a2+ -2y + M+ P -3x -y + D=0,
By -2v+p(Ix-y-1)=0;
Gii) 202 +3%) - x- 2+ M2+ )2 —dy-2)=0,
2+ -x -2+ u(x -8By -2)=0;
(V) X2+ 52— Sx+ 2y -3+ M3+ PA-2y - 6)=0,
x4 )2 - Sx+ 2y -3 +u(15x - 8y+ 3)=0.

2 3+ A+ 6 -2y -21 =0, 3. S+pL=0in each case,
4 ¥+ -4x+3=0,x2+)y*+8x+15=0, T 2x-y-1=0.

8. () (£2,0) (i) ©, £3); (iii) (0, 0), (4,0);
(v (L0, (-1,0; (00,22 (vi) (3, 03, (-3, 0).

9. (- 1L ). 10, 8x-2y-7=0; (-1, 1), (3,0).

1. ) -2+~ DA+ D=0,
(i) 2+ (+4P+ M2+ ) =0;
(i} (x - 1P+ (p - D2 {(x - D'+ (y+ )} =0;
(V) (x =22+ (y+ I+ M{x - ¥+ 2 =0.

13, 10x+4y - 13=0; 13(:*+ )M+ 102x - 6y =0.

16. (-1, 1), 0, - 1); 2®+)1 - 2x+ 6y=0.

17. 13(x®+ 3% — 28x + 16y — 43 =0, 18, x¥+39+ 25— 2p=0.

24, () G+ 8); (i) A+)8+2x—dy+1=0, 5(x*+%) - 32x— 6y + 330,

EXAMPLES 5 (Page 115)
2. () 60° (i) cos3y/6. 3. 3x+dy-17=0. 4. a=4.

5 x4 y848x+2y-8=0. T eyt 2ax-2by+r¥=0.
9, 92+ 9yt 4+ 29x - 15y=0. 10, X+ 2-2p-3=0,

11, x®+ 32 - x- 3y +p(x - 3y + 4) = 0 with alternative forms.

12, a¥+ 2 -3x- Sp+1=0. 14, 2P+ 5+ 2ex+2fy+ =0,

16. 2v/{(gl 2+ /" - e X2+ o - c)}=2218e + 2113 €1 - Ca
18, A2+ ¥ -Sx+2y+1=0,
19. X4+ P py—1=0; 92+ 97+ 26y -9=0, x¥+ )2~ 6y-1=0.
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EXAMPLES 5d (Page 119)

L () 3x+37 - 20x+12=0; (i) #2418 - Sx+4=0;

(iii) 5x+ 52~ 52x+20=0; (iv) x=0.
2.G:0,% G303 (-3 % (10 6. 33 cm.
T B+ -lax+at=0. g Sx?+ 82+ 93x - 25y + 107 =0,

1L (D 5x+ 58— Mx-7=0; (i} 552+ 52 -2x-T=0; (0, £v{.
18. The circle (a— Xt + y) - 2abx =0.

MISCELLANEQUS EXAMPLES (Page 120)
L a2+ A 6y=0, x¥+)2+ 24y=0, 2, A+yttaxLbx=0.
2 (-3 -2, 4. x+2y-1=0.
6. 23 +22+2x+ 6y +1=0, T.030; Aty -6x-4y-17=0.
9 4x+3y+1=0; (-3 -5 10, (3, 0), (7.0).
1L 2+ +4x+4=0, ¥*+)°-6x+4=0,
13, x—y=0; +Ma+bP-4c} 15. (Fa,0).
16. x*+y3—8x— 10y + 31 =0, 17, (73.0); x*+»* 18x+9=0.
21 (-1L,90), (2, 4% 32+3H+12x+8y-16=0.
22, (i) 22+ 2+ 10x+ 10p==0; (i) 2x2+2)%+ 14x+ 12y +5=0.
29. The circle' x® + y% =a® + b*.

EXAMPLES 6a {(Page 127}

2. ()5 tan §; @) 4, g; (i) 3, 0: Gv) 13, tan™ - 32,
(v) 2, - 2;; (vi} 4/(2+2 sin 6), tan™! {cos O/1 +sin &},

3.0 x=4% (i) x= —4-+3; (i) x =cos B +isinb.

4. x=1, - 14iy3). 5. x=-2, 1+iy3.

6. () x=F y=% @) x=-1y=1

8. (i) Circle, centre {0, 0) radius 4; (ii) circle, centre (1, 0) radius 2;
(iii) circle, centre (- 2, 0) radius 2; (iv) circle, centre (0, 0} radius 2.

9, (i) Circle, centre (1, 1) radius 3; {ii) circle, centre (-1, — 1) radius 3;
(iii) straight line, x =1; (iv) straight line, y +1 =+/3(x +1).

11, Max. 10, min. 4. 12, (i} 4; (i) 200+ +/2).
18. (i) 244 (i) 1+%4 19, 244 20, cos O+isin® with 0 ={=, =, im.
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EXAMPLES 6b (Page 130)

1. Gy -2-6i; (i) 2; (i) -3-12; (ivi -2-25;
W) $3-1); VD) s -6+177 (i) (- 9130 (vii) -F1+1
2. (i) cos 20+sin 29; {I) 4{cos 49+ isin 46);
(iii) cos 6+ 7sin 6; (iv) cos 38— isin 38;
(v) cos 20+ /sin 20; {vi} cos 60— i sin 6k
{vii) —1; (viii) - 1.

3 x*-2xcosdm+lor xt—x+1. 4 xt-2xcosirtl.
5. () x=2 y=-55; () x=-4,y=0; (i) x=16, y =30,
6. (i) cos®-7sin®; (i) 2cos0Q; (iii) 2isinb.

8. (i) -7/l6+/3;
(ii) 1+3 cos®+3 cos 20+ cos 36 + i(3 sin 6+ 3 sin 20 + sin 38).

9 2+, -2-14 10. 3z 13. (z; - z}/(z; — z3) imaginary.

EXAMPLES 6¢c (Page [35)
1. (@) +/2: (i) 4/13; (iii} +/13; acute-angled.
2. Positive, positive, negative. 3. When z,, 2,, z5 are collinear.
4, Max. v/5+ 1, min. v/5-1; tan12. T u=x2-3% v=2xy.
9. The lines are parallel,
10. (i) Max. 3, min. 1; (i) max. 4, min. 2.
14. Circle, 22+t +6x+ 5=0.

17. (0, -2), 2; () 0K |z| €4 (i) -msamzg0. 18. 2x+y=5.
EXAMPLES 6d (Page 138)
1, (Dcosn+isine{=-1} (1) cosdm+isindn{(=0);
¢iii} cos 3w - isin }m; (iv) e(cos 1m + i sindx) (=ie);
(v) cos 0 isinb; (vi) cos e+ Fsin oy,

{vii) e®{cos +/2x +¥sin +/2x); {viii) cos 0.
2. () &% (i) ety (D eV (iv) e (V) U7,

(vi) 5e—%, where ¢ is the acute value of tan™1 3
3. () R(9); () RE¥); Gil) RETD); (v) REEP); () REeH™).
= cos =4 cos?B—~3cosh; sin30=3sinb-4sin®6,

9. 2¢%* ¢os bx.

. S o v a1 fE? e
10. (i) 3(M%+ 7%, (i) Ej(e" - 7%y, (iii) T\oved [
18 (i) 4e*(cos x+sin x); (i) 3e*(sin 2x - 2 cos 2x);

(i) 42" (8 cos dx + 2 sin 4x); (iv) — e *(4 sin 2x+6 cos 3x).
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2. (i) y= e‘“i"{C cos \—?x + Ssin %3x},

Giy y= e‘x{C <oS y27x + Ssin %73:};

(i) y= e-h{c cos "-?x«k 5 sin ‘ﬁ—x};

{iv} y=C cos mt+ 8 sin mf;
() S=e M Ccosaz+Ssinre}, A= /(- %)

13, 140+ Dx+ i+ 40 - 13— Bt Lex -84t 14, 2x - 2xP- 40,
15, (2+11)&2@+9; £2(2 cos x - 11 sin x), e (11cos x +2sinx).  16. 161,

MISCELLANEQUS EXAMPLES (Page 139)

1, 3{1-itand 0}, 2. 128, 4. Circle |z| =1 anticlockwise.
5 (1,1, 2; (i) circle centre (3, 1), radius 2; (i) circle centre (-4 1),
radius 1.
7. () 2008 x; (i) 2e* cos v2x; (iii) 2f sin e,
9. () x*+)t=4; (ii) (x-—3)’+y’=16;
(i) y=+3x; (i) (x-2P+(y-1)*=1;
) y=x-1 (vi} 3a2+ 32~ 16x+16=0;
(vii) 2+ %=1,

11, cos 8=1(e + ), sin§ = zll.(e"‘ -7,
13. (i) Circle centre A, radius OB; (i} straight line AB.

1. () V/S5+1; (i) +/5-1.
15 () 2v2, 75m (D2, —4m @D 4w @) VL im ) 8w

b : :
17. ;,:‘-_-32{(- DR- 1} i - (- DR} 19. -2+2i 3+30

2. () e (i) e G L

22, (i) 2cos0,8; (ii) —2cos6,8-x; (iii) 2089, 6; (iv) 2cos8, B~ 2m.

1{+-(1-d
27, z‘s{_‘l—nz'ﬁ}' 31, cot 18, ir.
33, 1, 4m; 1, - 4m. 3. Inside the circle x? + )2 =1.

36. w moves along the imaginary axis from the origin to +o0 and returns
to the origin from —oo.

37. -4
1

H Rl—_Tsﬁ){l-—COSei'COGR"le“mS”a

41, (i) 1+icotd
+ i(sin 0+ sin n— 18— sin #0303,
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EXAMPLES 7a (Page 1495)

35 4 x=322v5% Soxmdy2 -3 T x=2+i 4L
8 x=+2i 31 /5. 10, x = £1//2, K5£v17).

H. x=1+4/3, +i. 12, 3.

13, x=+2, 1, - 16, x =1, +i, 22+iy/3.

17. -2and - 1,0and 1, 3 and 4.
18. (x*-6x+20x% - 4x~2); x=344+/7, 2L+/6.

EXAMPLES 7 (Page 150)

1.a+b+1=0. 2, x=-% -} 2 3, k=-9,56,
4 k=t28 x=% $ M k=-12,x=-2, -2,3.

$. 2p% - 3pg+ 24%=0, 6 x=-2 -2 -2 %

7. (10a+BP=(204- 3)2h+3a). 8 x=-% —§ &

9. (4b- T2+ (2a+ 15)Ta+ 306)=0.

10. (ab’ - a’bY =4 ah’— a'hXhb - I'D).

1L x=~2, -2, 31 £iv11).

12. {(bc—ca+ b+ (B2 + c¥)ab - B+ c)=0. 13. x=-2, -2, -2, }
15, 27at=256b. 16. v =-3. 17 x=h b £4/3

18. (g- 5)°=(r - pYps—qr).

EXAMPLES 7c (Page 153)

1. () 6; (ii) —-3; (iii) 3. 2, x=-2,3,6.

4 x=-4, 4419, S, () 36; (i) 393,

6 x=-H1 3 7.0 6 G}

8. 10. 9, P-14x2-Tx-1=0.
10, x=% 1,5 1 x=-3 -4 4

12, () L% ¢y -3- 4 x=-5 -3 1 L

1I5. () 2,5y, z=-2,1,2; (i) x,»,2=-4,2,3; (i) x,pz=-2, -1, 1.
16. x=-1, -3, 12 17. 5pq. 20, (1, - 2).

2. a, b, c=-3, -1, 2 22 4%,

23. (i) P+px—-g=0; (i) X*+4px¥+ 502+ 208+ q2=0.

25, x=-2, -4 1, §
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EXAMPLES 7d (Page 157)

1L ¥ +3P-1=0. .
2.() P-H*-8=0; (D yP+22+1=0; (i) y¥*+2y-1=0
3 - P i2p-1=0. ' 4. -6+ 18y~ 22=0.

5 ¥+ 498+ +1=0. G 19.

7. »-3p+3=0;, -3. 8 P+ -9=0.

9. P -131+36=0; x= -4, -3,1, 2
10 P +3826 -1+ 33— 2c+1) - (¢ + 36+ 1)%=0.

11, k=2; P-3y+2=0. 1. a=}s b=-2; P~ Ty+6=0.
13, A+ 62+ Y+ 4b) +a+ b+ 1=0,
14, ¥ +6y%+5y+-4=0. 15 Y+ 5%+ +4=0; 7. 16, ¢.

17. 5% - 32+ Blab + 3)y + BB — ab - 1) =0,
19. 2(2-u); ¥ -8y +26y-15=0.

MISCELLANEQUS EXAMPLES (Page 158)

2. x=-4% 3124/5. 3 x=-%323.

d +, -, +, -, +. 5 x=a,a a(-1+iy/2).

6. a=-2,10. 7. x=4 1420

9, x*— gex + a*d+ c% - 4bd =0, 10. () -3; (i) 185 i) 33

11, 4p*+ 277=0. 12. x=-% &3

13 x=-%H H5+£+/13). 15. ¥ +4py - 8¢=0.

16, (ca*+ cyby—~ coby) Wb+ by — €) =(Doey + ¢, 2. 17. x, y,2=—-4, -1, 5,
18. Oand 1. 19. x=-2, -2, %i 20. A =1, (7 1 /5).
2, 1. 2 x=-%3 3 23. 274" + 3b, 24345 + 452%.

24 (i} x,y,z=-2,1,3; (i) x=5,y=6,z=T; x=35, y=17, z=06.
25, {(5*+ c" - a®Na® - M) + B [ab(d* + ¢ - a¥) + 2] + Bcla® - %)

- abc]r=0.
26. a=33, b=30. 27, x=-2, -2, £4/2.
28 x=-1,1,2; —13<a<-8. 29, x=1, £iv2, H-1£/5.
A xpz=-1,1, 42, 2. x=+3 H3Live)L
33, 66~ 3t~ 2c=0; bP=6ct M. P+ 6pyr+ 958 +4p7 + 2745 =0.
3B.x=-% -3 b %

36. (1) 2a®-%ab+27c=0; (i) @®c=5% 2(2a®- 9ab + 27¢)
+X%g% — 3a%h + 27ac - 96%) + Ma®h + 9a¥c - 6ab®) + adc - HF=0.

38, =6, b=7. 40, (B-p)y— oXa—B); —(d4a® +275%.
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EXAMPLES 8a (Page 164)

1. x=1. 2. 3x+16y=4. 3 x+2y+2=0. 4 ymx-2,
5. 4x+20y=3. 6. 9x+y+1=0. 8 By=2alx-a). 9 (-1,2.
10. (% 4, 11. (-6, -2), 12 (6, 4). 13. (3, I).
14. (4, 2). 15. (- 1& H. 16, x3+4y°—x-d4y=0. 22. (~§, -2},

EXAMPLES 8b {(Page 168)

1. r'=1; ¢ =+1. 200, £1), (£4v2, . 3 yrex=2+3; 2.
5. y-x+6=0. 7. ¥-x+3=0; p-2x+12=0; y+3x-133=0.
8. 2a1(2 - Dx + 26602+ Dy = (a2 + 5514 - 1). 14, x=a.

15, (at® 2a0); ¢t=-2, -1, 3. 22, 248,

EXAMPLES 8¢ (Page 171}

2 A28 2121 1=0; ()2, GO, (i) -2, (v L
3. 5+ 202302 - 2aP) + B2 =0, 4. (c/tytaty, clytals).

1

EXAMPLES 8d (Page i76)

Ellipse; (i} line pair;  (iii} rect. hyperbola; (iv) rect. hyperbela;
{(v) patabola; (vi) rect. hyperbola; (vii} ellipse; (viii) parabola.

2. () r=3; fii) A=232. 4, x*-4xy+ 2%+ 1=0; a hyperbola.

5, 323+ 2y - 12x+ 2y=0.

6. Conics passing through the common points of: (i) the circle x¥+ y2=1

10,
12.
15.
17.

and the rect. hyperbola xy=1; (v) the ellipse x%/4+»%2—=1 and
the circle x2+y%2=3; (iii} the parabola *=8x and the line pair
(x+y—~D2y-x)=0; (iv) the rect. hyperbofa x*-1¥*=1 and the
ellipse x*f8+%2=1; (v) the line pair (x—y+ (x+y- 1)=0 and
the coordinate axes; (vi) the ellipses 4x2 + 9y2=36, 942+ 42 =136.

L xE 1A 4x 4 T=0.

{ay— aiayby — ¥) - aally — )1 =161 - by} - (x - VI

L x(3x+ 2y - )+ 2y{x — y+ 2)=0 with alternative forms;

3x%+ 9xy - TyE - 9x + 14y=0.
3xB— 2xy~ 23— 3x+8y- 6=0; a hyperbola.
2x% 4 Sxy+ 2% - 8x -8y - 4=0; a hyperbola. 14, 3x% - 3y%=8.
k=42, 16. (i) x=-15; (i) »x=1; (iii) »=0, -3, —8.
(a®+ 2Ox? + 2a2xy + 2a%° — 2a%b(x +3)=0.
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18. Conics through the common points of: (i) the line pairs
(x+y-1DEZx-y+ =0, (x-1)y-2)=0; (ii) the circle x%+)%=4
and the chords x - y=0, x +y+1=0; (jii) conics touching the rect.
hyperbola xy=1 at the ends of the chord x+y=2; (iv) conics
touching the lines x— y=0, x+y=0 at their points of intersection
with the line x=2.

19, 6x* - 5xy+16)7 - 19x+8y=0.

20, xt+ - 2@+ Mx+y—2afx+y—a}=0; 2xy — Ja(x+ ¥+ 4at=0.

22. At the ends of the chord x + 2y + 3a=0; the points (g, —24), 9a, - 61).
2. (a5, 0)

MISCELLANEOUS EXAMPLES (Page 178)

1. 4x -9y +13=0. 2 {(-1,2 3. 2cp-3x-2y=0.
5. (x3+ )30 =9(x2 - »*). 6 (a2- Pxy+ Px+ay=0.

il (-a 712, -2a/ty; s +203+4a5=0. 12 x-y-3=0,x+y+1=0.
15. 4{a?x? — bH®) = (g + DY, 17, bxth - x) - afk - y)=0.

18. B(y— p)=2a(x - «). 22, Bix 4 a¥? - atby=0.

33, xy+bx—ay-ab=0. 3. 232+ 2xy + 3% - 10x - 15y + 18 =0.

37, Conics touching the lines 2x-y+1=0, x+2y-1=0 at their points
of intersection with the axis x=0; A=0, A= -%5-

38, 3~ dax+ My f+ 1y — 2= 2an 1)y fg+ 4, - 2x - 2atst)=0.
39, (F+ n2)ax® + 2hxy + by®) — (@ + BY(Ix + my - 1)*=0.

EXAMPLES %a (Page 133)

1. (i) cos 56+isin 50; iy 1; (iii} cos 38 — i sin 3%;
(iv) cos40+isin40; (v} cos 86— {sin 89; (vi) cos 58+ {sin 50;
{vi)) -sin 60— 7cos 60.

2. () -8 (i) 8(1+0); (i) —128(1+iv3);
(V) —&(l+a3) ) 2903 (v} v%{.? :

3. 125(c0s 66 + / sin 60), where 8 =tan13.

4. (i) cos8-isin®; (i} 2cos0; (ii]) 2 cos 206; (i) 2fsin 30,
(v) 2 cos 58; (vi}) 2cos40+2cos 20+ 1; (vii) sin 56/sin 6.

6. 271 cos dnm. 7. 5¥(cos nB + i sin nb), where 8=tan™! 1.



388 ANSWERS

8. (i) +(cos6+isin0); (i) :+2(cos 40+ fsin 38);
(iii) :t(cos 20 - i sin 20, (iv) *[cos (3 —0)+isin (Fre - 6)];
™) + (1+fJ, - i} 2/ 2(1+10)

(vii) izitoos Fr+isingm); (vid) L(4/3+8); (%) = \,2(1 7.

9, (i) cos 4(2rm+ 30) + i sin $(2rm + 30), r=0, 1, 2;
(i) cos (2rm+ 60)+ i sin H(2rx+60), r=0, 1, 2;
(i) 2{cos H(2rr +0)+isin H{2w +6)}, r=0, 1, 2:
(iv) cos H2rm+0-4n)+isin §(2rm+8-4m), r=0, 1, 2;
M i ~H3xD, i) -L HI2iv3) (Vi) -2, k3
(viii) 2¥{cos $(2rr - 3m) +isin $2re - 47}, r=0, 1, 2.
10, () xl, £5 G -, }(::E v
(i) -+2i; i) * 5 ( 1+8),
(v) 2, 2cos $m +isin $r), 2{cos $r+isin §n),
vi) —1, cosdm+isin dn, cos $n ki sin In;
(vi) 2¥cos ${2r + }yr+ i sin 3(2r + P}, r=0, 1, 2;
(viif) 2¢{cos #(2¢ + e+ i sin §2r+ $im}, r=0, 1, 2.
12 () t2Hoosfre—isindn); (i) —i, Hi+v3) 13, 1.
14. (i} +(cos §= - fsin§n), L{cos $w+isin =)
(i) 2-¥cos 32r + P+ isin 32r+ P}, r=0, 1, 2.
15, () -2; (i) ~1; (i) L. 16. (i} xiy/3; (D) +2; (i) 2.
17. () x = -1, ¥ +iv/3); (i) L2(cos }m —isin§n), +2(cos §=+i sin 7).

‘\/2(1 +i

EXAMPLES 9b (Page 189)
1. (i) x=4+1, +;
(i) x= -1, cos dm+sin =, cosdr 1-i sin Jx, cos S L1 sin $m;
(i) x= - -i» #1 :I:!\/S), (iv) x=3, +iy/3;

) x= i;/—-z*(Hf) :1:172(1 D, - L K1 £iv3).

2 () x+Dx2-x+1) {il) (B+ v/ 2x+1Xx3 - v/ 2x+1);
() (x— (¥ - 2x cos 2n/54 1){x3 — 2x cos 4=/5+ 1):
(v} («®+ Dfx* - 2x cos nf6 + 1)(x2 - 2x cos 5=x/6+ 1);
V) (2x+ 1)(4x® — 4x cos /5 + 1{4x2 - 4x cos 3n/5+ 1);
i) (x+ 13— 2+ 12+ x+ 1)
3. z=+2, 14+i4/3, ~11i/3. 4. x =441 Liy/3).

5. () x=3, }iv3Q2-iv3), —Liv3Qriv3)y, (i) x=0, +i
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6. () (x®- 2x cos $r+ 1)(x* — 2x cos §n + 1)(x? - 2x cos Hw + 1);
i) {3 — 2% cos 6+ 1}{x* - 2x cos (B + 2x) + 1}{x* - 2xcos (0 + §m) + 1}
in

I L
7 x—ﬂ:l,oosz:klsmz’ cosTixsm Ve i

L1 iy,
9. "32(;1‘;';‘;-)'

iy L { 1 L
W Srsinb \x—(cos0+i8in® x- (cos0-isin0)[’

(iii) 1 x+v3  x-v3 |

243 |08+ 4/3x+1 xF—4/3x+1]

10, x=-% 31 £i/3), - 3G iV
1L () 02+ x4+ D0E—x+ D0 —xa/3+ D+ x4/3+ 1)

(i) (x% - 2x cos §r + 1)(x% - 2x cos &n + 1)(x* - Lx cos gw + 1)

(ﬁ—ums§n+1)(x=—2xcoslgln+1)(x=—2xoos-lg,inn).
13. () x =4, {1 - cos = 1i sin 4r}/2(1 - cos §m),
i1 - cos #r i sin $x}/2(1 — cos 3x);

(i) z=2, 2, 2(1+4), 0.

16. PP2=r"+ x? - 2rx cos (r — 1)2n/n.

EXAMPLES 9¢ (Page 193)
1. (i) 2cos 26; (ii) 27 sin 6; (iii) 2 cos 60; (iv) 2isin 49;

(v) 2¢cos20+4 cos 0; (vi) 2cos 38+ 1+2isin0;
(vii) 5+4cos®; (viii) 1+sin? 0 +sin 20.
2. () zt+ Y24 (i) 2~ 1/z5% (i) 3" + 1/27;
av) 3z +1/0% () (z- 1jo)% tvi) zhglzt- 1/z0%
3. (D) Heos 36+ 3 cos 0); (i) }cos 40 -4 cos 284+-3);

(iif) Tg(sin 59 - 5 sin 30+ 10 sin 8);

(iv) gg(cos 79+ 7 cos 50+ 21 cos 30 + 35 cos 8);

(v} —}{sin 40 - 2 sin 28%;

(vi) — 4 (sin 76+ sin 50— 3 sin 36 - 3 sin 6).
5. () Beos*A-8cos?b+1; (ii) 8cos?B-4cosb;

(iii) 32 cos®0-48 costO0+18cos?6-1;

(iv) 32cos¥6-32cos® 6+ 6cos .
6. (i) 3sinb-4sin®9; (ii) Bsin*6-8sin?b+1;

(iii) 16 sin® 6 - 20 sin? 0+ 5 sin &, (iv) 16sin® 8- 12sin? B+ 1.
7. () (3 tan ®—tan® 8)}/(1 - 3 tan? 0);

(i) (4 tan 8- 4 tan® 6){(1 -6 tan® 0 + tan? 6);
(iii) (7 tan 0 - 35 tan® 0+ 21 tan®©— tan? 03/(1 — 21 tan® 8
+35 tant 0 -7 tan® 0).

8. +v/3. 11, ) &5~ () ¥
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15, (D) Ht-itan®) (ii) (1 +cos? b7 sin 0 cos 8)/2(1 + cos® 0);
(iif) 8 cos? 6;
(iv) { =1+ cos 8+ 2 cos 36 + cos 40 — cos 58) + i(3 sin 8- 2 sin 30
— sin 49 +sin 50} (5 - 4 cos 0);
) (1-xcosf-ixsin®)i(1 - 2x cos 0+ x);
(vi) 27 cos™ 46 (cos 49 + i sin LnB); L
(vii} {1-cos?f-cos® 0 cos B +cos™ O cos n—-18
+i(sin 9 cos 0 ~ cos” B sin mB + cos®* 1 Bsin n— 1 83} fsin®0;
(viii) {1 —x cos B - x"cos b+ 2" cos n— 1 O+ i{x sin 6 — x" sin 10
+x"*lsinn— 1 8}}/(1 - 2x cos 0 + x2),
18 (i} 21; (i) 24.

MISCELLANEOUS EXAMPLES (Page [94)

. -256. 2. i, d(cosym—isin f5m), +(cos 25 +7sin 5.

3 H1-itan 19).
4, (i) Oc+ D(x®— 2x cos /7 + 1){x? - 2x cos 3n/7+ 12 ~ 2x cos $n/7+ 1):
(@) (- 2x cos g+ 1)(3® - 2x cos Hw+ D - 2x cos 5 + 1),

5 itan'd fredtanld —Zrn+dtan i
7. cos 86 =128 cos® 0 - 256 cos® 0+ 160 cos® 6 - 32 cos? 0+ 1;
sin 86 =cos 8(— 128 sin” 6+ 192 5in® 6 - 80 sin? 6 + 8 sin 0).
8. 1-18+0-43;, -0-97+0-81/, —0-22-1-24i.
1/ 1 1
9. 2_1(;1?‘ e l) 24(5x% - 102+ 1)/(x% + 1Y%,
1L x= £ 4/2cos slye +isin 1m0, L +/2(cos {5 4 sin 7).
13. Stan'$ -dn+dtanld ~dneftants 15 2V 3";*"0 0.
16. 1(1-44-0-170), (017 + 1-44D).
17. +t(cos ggn Lisin &), L{cos -{’irrﬂ‘sin %), +(cos 75w+ sin 5n),
+lcos Hr+isin Hin), +(cos L3n+isinila).

19 1 [ 1 o 1 ]
" 2aisin8 x-afcosG+isin0) x-afcosB—isin )|’
sim (7 + 1)8fa*"2 sin 0.
20. +2H(cos gm - isin ygm), +24(cos din+isin 11n).
22 1. 25. §=(dr + 1)r.
26. (x? - 2x cos Hn + 1(x® - 2x cos -+ 1)(x® - 2x cos 4 + 1}
(x®— 2x cos $9r+ 1Xx? - 2x cos £57+ 1)
(x® - 2x cos 32m+ 1)x% - 2x cos 23w+ 1).
27. 1, cos &= L sin #n, co0s § Lisin ¥, cos $rLisin §r.
30. (cot” 6 — 21 cot 8.+ 35 cot® 0 - 7 cot 6)/(7 cot® — 35 cotd 8+ 21 cot?6 — 1),

31. z=-}(cot%—!): r=0,1...@~-1).
32, Circle centre (-1, 0), radius 2.
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EXAMPLES 10a (Page 199)
1. rir+ 1) dn{n+1)(r+2).
2. (r+2Hr +3); 3+ 2)n+3)r+ 4 -24).
3. (3r- D0Gr+2); HGe-1DEr+2)(3n+ 5+ 101
(5r - 4X5r+1); -11;[(5n —dX5n+ 1)5n+6)}+24]. S
1 L n .
Cr+1)2r+3) 3(2n+3)
rir+ 1Kr+ 20, Jrin+ Die+2)(n +3).
Gr - D0r+ DGr+4); &103n - 2X3n+ 1X3n+ 4)(3n + 1)+ 56].

1 o
rr+1Y n+1

® =3 3 R

1 LIS
ot ie+2y i[i_(n+1)(n+'2j :
10. 1 . .l_[_l____.].___].
2r+ 10(2r+3¥2r+ 5)° 4|13 (2n+ 3 2n+ 5)
11 {r+ D+ D+ 3% +4); L+ Dn +2)(n + 3)(n + 4)¥n + 5) -~ 120}

ey

1 1 1
3 G T DR+ Sy E[B‘ @n+ D2+ 3)2n+ 5)]'
13, () dn(@+ 22+ 1) (D) 5a(n+ DGR+ 110+ 4);
@) dn(r® + 80+ 17n-2).
14. @) n(n+ 1% Gi) fnln+ 130+ 191+ 8). 15.
16. (i) dn(4n* -1} (i) $n(2n+ 1X6n*+ 310+ 37);
(i) (2 + 1)(1222 + 100+ 1),
1 _ 1 . rin+1)
(r+ 2)(r+ ) (+ IDMr+20r+ 3 Hn+2Hn+3)
(i) 1 a(5n+13)
(r+ 2)(r+ 3) {r+ D}(r+2Xr+ 3) 12(n+2Xn+3)’
1 1
(i) r+3 P 3, Wl g N P
Sar(a+ 1n + 20+ 3¥8n + 7).

9. ® 30+ 5n > 171+ 66n*+ 610
8(n+ 1¥n+ 2)' RUn+ Din+ 26n + 3)
iy AL 48t don
36{n+ 1{n+24n+ 3)

20, 6r-1; 9 +2n.
B () In(48" + 80n® - 61—~ 4T);  (ii)

w42n
(n+1)*

1 G)

S+ 30n+37m
e(n+ IXn+ 2+ 3)
3nt+ 50 e Int+n 631 + 13208 + 610

B. O o ®agrnmr W 3emr e DEnt 3
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EXAMPLES 10b (Page 203)

1. sin rB; sin 1m0 sin $(n+1)0 2. cos 7D; sin 40 cos d(n+ 10
sin 16 sin 46
: . sin a0 sin 3(n + 3)0 . sin 78 cos (n 10
3. sin ‘}(r‘l‘ l)ay sin *6 4, cos 2"6, ——sﬁe—-..

5. sin@+4r-1n); vz sin 3= sin @+ 4 n-1m).

6.cos(ﬁ+§r 17y sm}mroos(ﬂ+}n 17,

E
7. 7 lcosro 1 B; (1-2cos0-2%cos w0+ 2" cos n— m— 1 03/(5 - 4 cos 3.
8. (3 'sinr-18; (5+2sin6-4c0s -2 5in 40+ 27" sin g~ 1 6)/

(5-4cos ).
9 (-1 Tx"leos(r—18; {l+xcos@4(— 11 x™ cos 00
+{(= 171 x5 005 5 — 1 B}/(1 + 2x cos O+ x9).
10, (-1 1cos (2r- 1)9; {l+cos 8+ (- 1) (cos nS+cos n+ 1 §))/

(1 + cos 6).
1. G) 3n- sin %n;c:?: fﬁni— l)a; Gi) sin -}mz: 21:!%}2: +Da
2,,1_1 cot 2,,1 3 x—2cot 2x. 13, cot}x —cot nx.
14, cos™*! 0 sin #8/sin 0. 15. (cot 8- cot n+ 1 B)/sin 6.
17. +/2sin dn=sin (0 +4 n— 1 m) - sin (8 + 3 mm)].
18, &—3& (tan n+1 x - tan X)— n. 19. (2 cos 3B)" cos (= +4a8).

sinhdnxsinhdan+1x
sinh 4x
22, tan la+tanlp+1-1.

sinh 4ax cosh 4 »+ | | 1 x
sinh §x

20. () M (TY

EXAMPLES 10c (Page 207)

- _ T
1 L _"2”+“((11 _2)3). 2, 31+ (- 11 @u+ 1),
3. 30B3- 2P - . 4. 2{3- (n+ P - @)1
5 1-(-1y"ncos" 8 cos 6(1+ (- 1)* cos™! 8)

. 1+cos0 (1+cos B
1-Qn- D=1 2x(1- (-1 )

6. 1+x +xF

7. 2{a- @@+ #n- 1A +d(1 - FP D).
8. H7(1 - 3"+ 2341}, 9, 3[7-(- 1'%+ 7).

1 - X(1-x"Y) 717
10. l_ji[z_i(ng—ni-ﬂx"]*_(f B I S
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. @ Lo@em b 2x(-x Y,

1-x i-xp
p Lo e Q- me) M1- 2
W —5- AP A=-x°

14, @) A +xP+nx(l+x3;
() {l +x"+3nx(1 +x)""‘+n(rr D1+ X3,
— (1 X1 -xY
16, {1) —x * ek
(i)

1-(n+ l}’x"+ Ix— (24 3t +213(l -x“).
1-x (1-xp 1-x7

17. (3" +1). 20, (@ A2 1+ (- 132 (i) B2 +{n- 129,

22 ("‘ l)hnCafg.

MISCELLANEQUS EXAMPLES (Page 212)
1. () 327 - 18- -9 +4), (i) 4n("+4nd+4n-1);
(iii} -115!!(11-1- 132 + 190+ 26).
3. mn+24n+3).

4. n(2n3+8n’+‘m—-2); (i) :}n(n+l}(n*+9n+20).h 6. - 8n%,
035 +2:)In3+‘2)]' @ T
9. () Tnin+ DO+ 1a+10); (i) 3;_1 -
4-zmsﬁ;2%mne+§:imsﬁ e};(s—4cose).
12, }nln+ 1)(2n2+ 22— 1). 13, S(n - Dnln+ D3n +2).

16, ¢ LD, 0 :)'; D i) §+ 3G +in- D,

16, (e + 1¥An+ 11) + 6(2" -

I 1 S (| i )
17. () N2 e+ | (ﬁ)i E_(n+i}(n+2}(n+3-jj|

1 17 L, e b
w7 2yl Parcmghy

2. Gy In(Int-1); G % 24, n(n+ ¥ +2).
.  uAidnal 1
29. (i) nln+ 1Yn+4¥n+5):  (iD) R T Y
]
32 ) Zral L e D 2). 33, (i) {ab)t".

wa+n+2) 4
34, %[3 608 B+ (- 1! 3:_1005(3”6)]- 39, Jnln+ D+ D - o

. 1 a | 1-3nfn+1)x"  2x-nx? -t
. () r:,[m“m?;- @ = ta-ot a- x]’

l




394 ANSWERS

EXAMPLES 11a (Page 218)

13, 1-dx+doxd-adoat .. 16 x— 4%+ Fex® L L,

17, 1-2x3+ 5t - 348 |, 18, Sx— T8, 4 110,85

19, I-x+x?~ 20+ dxh Tax++ 80 +3x0 L 143432 ..
20 log2-x+3x*-§xf ik ... 2.2 2.0, 23 -4

EXAMPLES lib (Page 221)

12, jr+x-18 13, -}
14. (i) 0-0009995;: (i) 0-50025; (iii) 0-7953 rad.
7. Gy 2; () -1: Gii) 3; (v 1. 18. -1

EXAMPLES llc (Page 222)

1 cosx-= l—f :: ... sinx= xu';—:+;f
2, ¢coshx= 1+'§+::+ + .. sinhx= x+;-:+xs+ .
3.0 1-2x+3%-42+ L. (i) x-b? it -+ L L
4osinTx=x+3xat+ S+ L coslxmdn-x-bd- At - L L
6 x-d3+ 550 . . T 2x— &3+ 83T, |
8 () dr+x-dx%+ .. (D) 2xtdad+ L L
(iii) 2x+ @458 L L,
9. 3-1416.

10, ) (1-x)% () I-log(1~x); (iii) 2x+(1 - log(l - x).

EXAMPLES 11d (Page 226)

1. “"‘*"(i—n’--- 2 l+x+dat-da .
mex?  mixt #Ex2 e
3 1- ot a7 4, l+mx+—2T+ St
2
5. l+x1032+(xl°;2) +('J“':;$2)a
6, x4 daf - Ixtt L. Tox+ 38+ 7005
(mx)a {mx)p® (mx)® (mx),;
8. 3|+51 ‘. 9 1+— 37 4'+
10. 20 -3+ 8x5-3x7+ . L. 1L x— 33+ 500 . .
12, x—$0+ 335 .. 13. gy=ay—a,=0, a,~1, a,= 4

19 y=k(l+x+h3+fpS+Eipd | |0
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MISCELLANEOUS EXAMPLES (Page 227)

1. -x+Ex%+ 5+ 4t 2, (- 1Yl rl

3. (- 13+ 34 . 30N 4, 15— xt+ %t

5 1. 7. ]+x*+}x‘+;%3x‘

O, 1+ 2x+2x2+ %x7 - Fxt - 345, 1L L+ x+dx3+ 45

12. cos 0, 3{cos 28 +cos® 6), I(cos 30 + cos® 8).

13. log 2+ x + a2 + 38+ gt 14, 314159, 15 2.

16, —4x%—Fhxt - gt 18, x - da®+ a8 - flext + px5; 0-106.
Wk G 1 Gy 1 () 00 23 x+ P40t

25, in+iax+;}(2b—a2)x2+~11;(a3-6ab)x3 L. 26, LLreallog(1+a),
27. a=0, b=1, c=4,d=1. 28, y; =1, y,=3. 29, -2,

30, x- x®+dxt, a3, () ]og 3, (i) -2 35 x- rigx

EXAMPLES 12a (Page 231)

1L (- +e 2. e +c. 3, Jlog xP+ec.
4, 1logsin2x+c. 5, Jog (sin ¥ — cos X} +c.
6. Msinh 1xP+e. 7. {2+ i+ e 8. HxP-+Dire,

_l_ 2 fntl H
9, n+2(x +a@prtl p e, 10. 2sin v x+e¢.

1. {2+ 2x+2e " +e. 12. xtanlx -4 log (x¥+ 1) +e.
13. xsinh x-(1+x+c

14, $(2x*- 1) sin? x+ fx(l - 2D + .

15. $x*tant x4 -x +tan" x] + e

16, xcos” ——cosh"‘x+c 17. 2tan‘1x—£]og{x’+l)+c.

18. 4(sinh x sin x - cosh x cos x)+¢.

19. xlogx - 2xlog x + 2x +c. 10. ez—%n. 21, 2- /3.

22. &-(1/2— 1. 23 log 303 + 24/2). 24, -,-':,-(52’-2}.
1
\/2 tan™1 — vy 26, 4= -log 2. 27. 2 28 in-log2.
39, (i) 4 sin 26log (1 + tan 8) — 40 + 4 log (cos 0+ tan B) + ¢; (if) e“tanix +c.

EXAMPLES 12b {Page 236)

x+1 1
1. +c. 2. *] g - 2—(x—_1)+c
3, ﬁ{l tan“’-cwitan'lg}- 4 x+3loglx-N-Llog(x-D+ec

S Jlog(2+1)-dlog(l-x)-4tanlx+e.



398 ANSWERS

x+1 X
G.i:log—l it}—-—)'ﬁ-c.
2x+1

1 -
7. dlog (x— 1} -} log (x +x+1}+v,31 n 1__‘\/3._.,.6_

8 tlogix+D-3log(x+)+1tan ' x+c.
9 clog(x-3)-dslogv+2D-Llogxr+ec 10, 3~ x+tan ! x +c.

L=l 1 24 1 xy2
I1. +/3tan™? 777 tan 3 + 2 \/2 tan II 2te
1, - 1
13, jlogx+l—-‘,,—°-tan Tix+e. 14, logx—'}log(x’+1)+2( Tt
x
15, tan™ o— ch+c 16. g tan™ 1%x+8(x’+4)
Vi{x+2)-
17. log ‘v,{x+2)+1+c
| V5 - 14241 -x)
18, log (x+ V(I—x)}—v—s og m\}‘(’f—;ﬁ
19. v(x?+x)-dcosh 1 (2x+ D+ e, 20, sin 1 (x-D+e.
21, VR 2%+ D -sinh T (x+ D+e.
22, %x(x”+x)*+}(xg+x)*— feosh 1 {2x + D+e.
Vi{x+2)~4/3
23, 2\/(x+2)+- IOSV(x+2)+\/3
24, -%sinh™? x+4x/(1+xB+c. 25. —sinh™1 (£)+c.
1 x+v2x+2)+2 1 g VAx+1)
26. 2\/2 B Jxi2)+2 V2 x €
a3+x T
27. %Slﬂhlv—z'xﬁ' 28, —szsmh 1\/.‘—:—3':—1+C¢
24 52
29, \/(aa b,}tan ,\/s_ba"‘c
30, coshlx +sint —+c
3. \/ljr—coshhl( )+c. 32, - xivixE-D+e.
33 () ~1log2;, (i) log%
34. (i) cosh™? Zx_;f_a:-_b)_{_c; {ii) sm“lzx (a_+b) +e.

35, 2n+3log2- 482
37, () v8-+3+cosh™3-cosh™2; (i) in(b- )t
38. 1 sinh T x+ 31+ xHi-dat+ ¢

. (i) %( - 2—\'/2) (i) sinh~ 1.
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EXAMPLES 12c (Page 243)

1, sinx -4 sin® x+ +sinf x+ e 2. beos x—dcostx+e.
3 —}cosdx-%cos2x+c, 4, tanx-x+c.

5, 1sin x cos® x+ & sin x cos x +3x+¢.

6. —3 cos x sind x— 5 cos x sin® x - % cos x sin x +gx +¢.

7o htantx+e B. —dcostx+rc. 9, tanx-cotx+e.
10, Jtantx—}tand x +logsec x+¢. 1L —4cotf x—logsinx+e
12. -4 sin® x cos® x — } sin x cos® x + 4 sin x cos x + {gx + .
13. 1 tan® x + tan x +¢.
14. ] tan x sec® x + § tan x sec x + § log (sec x + tan x) + ¢,
15, -} cos2x - {i cosdx+Fpcos bx+c. 16. scc x +logsec x +c.
17 4an T tandx) + e,
18, 2x +log (2 cos x +sin x + 3) +e.

1

_ > tap-l
19. x vQtan (\/ztanx)h:.

20. tan x)+c

1 _
w0 (7
@ bz)ilogtanﬁ(x+tan b)+c.

22, a,ﬁa{ax+b log {a cos x + bsinx}} +c.

21.

23

1 cot x+tan“9 +¢
Tattot a ’

_ 2 . -
24, Iog(cosecx+cotx}+l+mix+c 25, sinh x + § sinh® x+¢.
1 1 . 1. .
26. i{m_‘_ﬁsmh (m+n)x+ J:HTH sinh (m—n)x}+c.
27. } tanh x sech x + tan™ (") +¢. 28. Lcosh? x-}cosh®x+e.
2 - a+h
29. \/(a‘—bz)mn (J = e’)i—c.
_ . . 3 sin x(1 + cos x)
30. {x- a}cos a+sin xlogsin(x—«}+e. 3L 1log 7(l+2cosx)9 +e.
32, tanx+2cot x-fcotd x+c. 33 (3v2-4).
M, &, 35, 3-log2. 36. infa+b).
1 Vib+a)-v(b-a)
37. 3log3 L . -
blog3. 3B 505 B 5D B o vE-a)
|
ol
40, /2 tan 7 §r.
1 . 1 sin @
4L (b~ - 2tan! ? .
(l—eg)i{“ﬁ esing) (l—e’)*ztan \/(1+e) e91+ecosB

43, (D 4dr-log2;, (@) w; @) I+7—;‘§tan %
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EXAMPLES 124 (Page 24T)
1. (e - 13). 3. S 9, Je—1. 10. (1 - 4/2).
x
I W= Dh= e+ OBy Lmde iy 12 P
14, (i) nly=cosh x sinh™! x - (n— )y
(i) (n= 1), =01 - Diuy—tanh™ 3 x,

17, @a+ D=2k — x¥(1 - 29,
m-xcosx+sinx n-2

e P T A R
EXAMPLES 12¢ (Page 252)

3.0~ () 2 8. () 3~ (i) O.

13 G) 7% (i) nl. 17. ) 7”2 tan™1 %2
EXAMPLES 12f (Page 256)

LG 3 Gyl 2. () 3m () 3 Gi) 3.

0% )1 5 1. 7. () 4m; (i) cosh? 2,

8 10. 9, () nv2-v2tan" (1/4/2); G w2

10. (i) ir; (i} = il # 12. (i) =; (i) =

B.@Ok G5 Gl 15 1L 16 \7(&22—_ Bi){%n—tanhi \/ﬁf—ﬁ}

17. n'.. 18. g(a+b). 20. () 1+4m; (i) 4~ 22 S,

MISCELLANEOUS EXAMPLES (Page 258)

1. () 3log j‘f_f +e; (i) cosh L (x-2)+¢;
(iii} v (x2-4x+3)+2cosh ' (x-2)+e¢.

3 () dr; (i) 3443 4. 9-3—_{'3-2(0 cos bx sinh ax + b sin bx cosh ax) + ¢

5 () x+ilog(x*++8log(x-2)-}tan i x+¢;
() 30+ B3+ Ha- B+ B4 e; (i) ~ 1y Dee,
6 () 3(1-log2); (i) logv3-%  GiD) %
7. () xtan  x-tlog{l+xNtc;
(i) x (sinh™! )%+ 2x - 24/(x¥+ 1) sinh 1 x + ¢,
8 () 3r; (i) 3m. 9. () v2 (i) 2v/2+cosh™3.

10. (i) log ;}: te; (i) $ 7 x4 (L- a0} + o (i) - a2+ e+,



ANSWERS
13 (i) n"?’z tan™! 4/2; (i) -11:’(1 - \/"1_2) (iii) :/311’
4. 1= ;”":;1..- n+12"_ $2./2+ 55 log (1 + v/2).
15, Lxdy/(1 4+ + 4 sinh™ xd+ e 17 '—”2- log 3+ v+ ‘—h g
18. () 4w (D ;/—s[smh" 3 - sinh™1(3)]. 19. 18-
23, () \/5 log ﬁ* s (D) dm A
2. (i) 2%¢C & [tan"l Ttsin o a]; (i) 551—0-
26, (i) 4n - &1032 % (i) 4.
P WOPLAN O \,3 Jztan'lz
. s (l'_—k"‘r) 3. 1.

31 (@) 2+3cosh 1 E; (i) log 2+ v/3)-1v2

32, nsecda. a6, V,iz(sinh.‘l +3-sinh™! 1)
38, (i) 8logsecd; (i) -im(n' 2.
9, () sgnb-a¥; () o log L “-

™
41. (n 2)!“-1"’ (ﬂ n, Il &W, 12- 1. 42, 3—\/3'

EXAMPLES 13a (Page 264)

L. $=4n+06; p=rcos® 2. ¢=8; p=rsiné,

3. ¢=x-0, p=rsinf=a 4, $=ua; p=rsina

5, $=10; p=rsin 8, 6. ¢=n—30; p—rsin 40=a cosec 30,
7. $=20; p=rsin 20=r¥dd.

1+2 i}
8 é=tan™? (—';Ticn—og—); p=r(1+2cos 6)/+/(5+4 cos €).
9. (3 3m), (is %1'!), }TI.’. 12 (i%; ér;)
5

14, &= 18. (1/7’ & tan” \/3)
20. () r=acos?18; (i) r=a?cos®$0; (i) rcos 0+a=0.
21, =gt cost 0~ bt sin® 0. 23, ira. 24, 8a.

399

25, Sy entens-em). 2. 8a 29 s=id+9 want 0-8]
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EXAMPLES -13b (Page 267)

L [+ AT[(hm) + 8], 2. 1a 3. la.
4. o 5. $av/s. 6. av2. 7o
8. 2—;3 numerically. 9. }a. 10. H%fa, AL }a.
12, 1av/14. 14. p?=ar. 24. r¥*=gp,

EXAMPLES 13c (Page 273)
1. 6m. 3. 1a2A 4. Area==mr/(5 + r%); volume =irrih.
6. Volume=5n?; area=3n®, 7. 60=2 cm?; 33a2 cm®,
9. 288~ cm3; E¢dmem? 10, 7127+ 16232 cm?.
13, Area=3h+/(ah); volume=1Exh/(ah); =3%h.
14. f5mab. 16, 3za3, - 17w~
18. Volume= $ner sin® «; a(3 sin a — 3o cos & - sin® «)/(a — sin « cos a),

19. 4ab(§r: sin~ 21, lsntat.

\/(a3+ b’})

MISCELLANEOUS EXAMPLES (Page 274)
W3 33

47+ 32 - N s 7. 238 10. 2n%ab.
13, Joe(dsr-8) em®; InliSt-Hem? M. (2, ), (-3 cos B
15, pr=g% 17. $c®(10n +94/3). 18. %\/3 21, $ad
25, g, 27, pa™ ="l 28. 3!a 31, ir,

EXAMPLES 142 {(Page 279)

L (£1,0,0), (0, +1,0), (0,0, +1). 3 V2 WA V14 5 2,
4.G) v14; () 2v3; (i) V22 (V) avé. 5. (1 4 -,

7. (£2,0,0). 8. 2x24)2=0, - 0. 9. 44 9).

. -2:3 11. x=2z. 12. x+y+z=3.
16,11 G LAk GG b1 Gy B

15. [40x+ ), I ), 0} 16| 52F 00, L0

17. x*+3%+22=4; a sphere, 19. (2,1, 0).
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EXAMPLES 14b (Page 283)

1.1,0,0; 0,1,0; 0,0, 1. 3 =44
.2 3 4
4. (l) ,\/3 \/3 ‘\/B, (ll) :/793 :/Tg! -\/_29s
(iiiy O, :}iv - —v,—z, (iv) - ’ -, ;s where r=+/(a®+ b + 5.
2 5 1
1, N . S
5 V13 . 730 " v v0
L2 1 1 1 3 3 0 11 1
7. 1_/3’ %, vE (i) -Vﬁs \,71_9”\/_19' (iii) ‘/3: 73 Wi
NS S IR S LS. 3.
) - -y Ty Y Vil Tyl Vil
8 r=-1%
g L 1 1. 1 1 1.1 o1 o1 11 3
"V VY VY TVIVIVY VR TV VI VY VY
10, 90°, 54° 44', 35° 16, 11. 60°.

12, Piane y=0, {: 0: n; plane x=0, 0: m: n.
13.

H m 0
VE+ ) JErmy

14. cos“‘(‘/ ])-=72°2? 31/105(1 units. 15. cos” (\/130)=19°29"

EXAMPLES 14c (Page 288)
1- (6, 0, 0); (0, - 3: 0); (0’ 09 2)'
3. () 3x-y-2z=0; Gi) 2x-2y+2z=2; (iii} 2x- 3y-10z+3=0.

4, x-2y-2z=3.
5 ®2L0% () 1; 0,0, -1; {in 2; -4 0;
w2 . R
(IV) 2 é, _%’i (\") 1 \/3 ‘\/3' V{s!
(vi) O; 3 (vid) o3 ; 1, _5_,
1/33 VBS \/38 \/110 110 4/110 4/110
6. x-2y+2:=0; 3,
8, (i) 45°% (i) cos™® \75 (i) cos™12; (iv) 90°.
9 3x+3y-4z+41=0,
10, M 0; (D) ;/2—5; {iii) 1,"—14; {iv) 1/83 12. Opposite.

13, 12x- 19y~ 52+ 12=0. 14, x-2p+2z=9.
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16. 2x+4y+4z=1. 17. (-1,0,2).
18, (i} 3y-2z=0; (ii) x+4/3z=0. 19. -5x+dy+z+7=0.
20, 1lx+8y—7z+26=0. 21, x-y-z+2=0,

22 x—17y~10z+1=0, 19x+ Ty~ 10z- 110,

23, () ABC,7=0; ABD,12x-9p+2:-0; ACD, 3x+6y-5z=0;
BCD 15x - 3y + Bz=133;

223
=1 e - o ’
(i) 1/229 (iii) cos V125198 31723
7
T

EXAMPLES 14d (Page 291)
1. y=z=0' Zmx=(; x=y=0. 2, x=y=1z

3 O=3=% bik
(i "‘—--1-=”=z $ 4%

z+1,

(ll.l) "-_- +%_ 2’ § i §'

4 12
n X1 _y_z+1_r, o Xoy-l_z_ r
e e S I W 1="53-3"7n
o X=1 ¥ z r
@) 5==3=1"Vis
XY 2 x-1_y+l_ z x_3_y+l_z-2
505-1=3 @ T UL i iy B
1 1
a. 0‘,“7,2!172 7 x"ﬁ=y—ﬁ-z_'y_‘\‘/—3
8 (-1% -3 9, 6x+y-4z=0.
10, x-4y-2z=0. 1. b -5 5; /5
12. 90°. 13, 16x -4y - 5z-1=0; x+ T4y - 56z +167=0.
x-1 y-1 z—]_!_
14. *‘\/‘21. 15, T—_—l‘z_—z——3

16, 2x -3y +3z2-5=0; Sx+8y+22-1=0, 2x-3y+3z-5=0.
17. 3% -3 8. 18, Ox-y+22-6=0, 9x -2y 62+ 8=0.
19 (1530 -9, 20. 04, %, 0% (1,0, 1); x-1=4y=3(1-2).
21 cos! (F)=79" 1",
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. o 2 o ’ i -ye il jfa
22, (i) 90° - cos l(m) 32° 19 (i) —ix=y=1z; (i)

x y+l z 1 _l’ 1
B3="170 WA

EXAMPLES 14¢ (Page 297)
L () x=y; (i) 9x-5y+32z-13=0; (i) 3x-2y+z+1=0.

2.1, 3 2. 3. Sx+y—9z+10-0- Sx+y—9z+10=0,
4. () ‘\/2' {ii) v,lo, {iii) vssﬂ’ (iv) %

. . x—8 y-3_z- z-2
5' (1} (s: 3! 2)! (_3! 8, 4}) 11 _5 _ 2

x—2y_lz3.

6. B 52 e 7. WV 3y=x, ze=—1; 4/3y+x=0, z=1.
13
10. ‘/5 11. 4.9. 12, Tx+4y-6z+13=0; Wity
13, 27:77: 35 . Tx+19y-11z-6=0. 18, v8 m.
MISCELLANEQUS EXAMPLES (Page 300)
2
1. —1/'"5 2, %’ ‘-‘g: %; (—}: i’ —g). L Hx-y-2)+3=0.
9
[1 —1 n -1 - o ’
4. Same side. 8. cos! ¢ 6. cos 729 35° 35,
T 2:3 8. 90°, 45°, 45°. 10. 60°.
o _ —1 — &0° 44° - -
11. 90° - cos 1/159 60° 44°, 12, 15x+y—Tz+2=0. 13. p.
14. () 3x+2y-2z=0; (D) 18x—22y+ 5z- 34=0.
. 14
-0 13,
16. (i) 3x+2y=0; (i) dx+y-4z-1=0; cos™* \/429 17 4

18. (3445 -1 19, 2x42p-3243=0; (-3,3, 1) ot (—3', 45, $8).
10 x y z

21. cos™! - ‘V!418' —4 11=I’ 23, x-2y+2-0, x—y+l=0.
-3 y-1 2
2. 30, 9). R e S (s Ik t L) 2
x-1 y-2 z-3 4 -7 16
7. 0 ‘j-T' 28, 9x——2y—52+4-0 ‘\/_ Wﬁ—s ‘\/165.
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1/5502
14
32 x-y+z+1=0; Ix-9p+2z=0; dx-6y-z-3=0.
8
3 4 3 2

33. cos™l —— =56°46"; 80: - 56: 149, N e T LTS
€08 WETE 46°; 80:— 56: 149 5. 735 735’ 7

29. 3L 39x -3y~ 30z-38a=0, 33x - Tdy - 4824 332=0.

EXAMPLES 15a (Page 305)
L (@) 2+)24+22=1; (i) ¥+ )24 22=3,
(i) 22432422 - 20+ 22+ 1=0; (iv) X2+ 2422+ 2x - 2y - 4z - 3=0;
(V) x4+ 32+ 22— 6+ 2y + 824 21 =0
(vi) 2%+ + 22 - 2ax - 2ay - 20z - 23=0.

2. () 0,0,0), v3; (i) (2, 0,0), 2;
i) (~1,2, -3, 4; @) G -1, -4, 3_‘/2;
® & -» 2 i) (*a’ e °) mﬁﬂz .

3, x’+y’+z’—2x—2y—2:+2=0.

4. 33+ )0+ 2+ 12x - 6y + 62+ 2=0. 6, _il%u—zy (-2,8, -6
T By r 22 - 2x+2y-4z-5=0.
g ¥=1_¥=2 1. (5 ¢ 3 10. x=0, 3y +22=0.
1 -8 4

14, ) 302 +» +29-5x-Sp-5z+2=0;

() 4(x%+)%+ 28— 5x+ 30y - 25z=0;

(i) 2(x*+ 3%+ 29 - x+ 1By -232-26=0.
15 (3- 5 45; 4219 16. x3+ 32+ 22— plx+y+2)=0.

EXAMPLES 15b (Page 309)

1L x-y+2z=3. 2. x-2y-2z49=0, 3 6x-3y-2:=49,
4, Iy—z=3. 5 Sx-4y—-4z+17=0, & 1ly-2:-22=0.
7. 2x-3p+z+14=0. 8. (5L -4 9. p=-4,14,
10, x+y+2z+2:+£4/18=0. 11 () 2v/3; (i) 4/10; (i) +/13; Gv) 34/2.
12. Qutside. 13, dx+y—z=0, 14. (5, -7, 3. _

18, 2y1z=0. 16, 2x-y+4z-5=0; 4x-2y-z-16=0.
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EXAMPLES 15¢c (Page 313)
133+ 2+ N -4x+y+2)-8=0. 2. /17, 3235
4. (-2,0,0). 5, 2x+y-2z-9=0; (3. & -%).
6, 2+ 422 dx--2p46z41=0.
732+ 22+ - Ay +22-19=0; xP+pi4z0+ 204y - 10z+5=0.

8 82+ +z)-3lx+10y-30=0. 9. (b -1 5*/3

10, x—2y+4=0; x?+)2+28-x-2y=0.
1L X242+ 2% —dx+ 2y -2+ 5=0; P+ +22-4x-2y+3z+35=0.

12, Hx? 4+ 32+ 2% - 300 — 42y - 422+ 87=0,
MW+ 2+ 20— 6x+ 6y + 62~ 33=0.

13, 302+ 32 1 28+ 16x + By - 82+ 16=0. 14, (135 A% 42D,
15, %+ 384 28— 2x+ 28p+22-2=0, x¥+ 354 28— 2x—dy+22-2=0.
16. (5§ 4); 12 17. G e

18, x¥+y%+ 7%+ 6x-3y+3z-4=0.

MISCELLANEOUS EXAMPLES (Page 314)

12024384 29 - 13x+ 12y + 122— 14=0. 3, ux+wy+wr=0.
4. xﬂ+y3+z=+6_x-—2y+4z_4=0‘ (1 0 "’I)- 5. (2)0)0)'

6.5- 2= 2 (4 15 D (BB

7. A+)R 22— 16x -6y —4z-73=0. . (-%-% 9.

10, 303 +)2+28) - 132 - 13y - 1324 30=0. 11, %ln, 22x, Om.
12 (-1, 3 Vi

13. x24 )%+ 234+ 62 - 16=0; 5(x*+ )2+ 2%~ 14x ~ 28y ~ 122+ 32=0.
14. A3+ )24 27— 10x 18y 48z 4+ 16=0.

15. 02— DO+ + 2B - 20x(3 + 1) + 202 - 1)=0;
centre {a(3® + 1)/(02 - 1), 0, 0], radius 243/(:3 - 1).

16. x4+ 334+ 22~ 2x - 2y—2z+2=0. 17. 2+ 3+ 22— Bx - Gy=0.
19, 224324 20— 2x+ 2y - 32=0, 3x -3y +2z-6=0; (3} -5 §D).
20, %+/14. 21, 42+ %+ 20+ 10x - 25y - 2z=0.

22, HxB+ B2 -Sx+9p—3z+1=0.  23. (2, 4,4, (3 4,5D.
24, 303+ 32+ 2% - 2x—2y-22-1=0,

25 (1. 3- I); radius ; 81(x%+ %+ 20 - 126(x +y + 2} +98=0.

26. X2+ )5+ 25 10x+ 4y - 62— 11=0; 1iiddn 27, 3.
29, 2x-y-2z+4=0, x-2p-22+T=0; cos1 &

31 303+ 2+ 2% - 12x - 6y — 4r=0.



406 ANSWERS

EXAMPLES 162 {Page 321)

1 X
1. 4x3p, X3, T
y R
. »
3. siny, x cos y. 4, e 2ylog x.
5. %48, x4 3t 6. —ysinxy, —xsinxpn

7. 2xy £5¥, X2 . P AR
Y 8 x4yt xtpy?
9. ytan xy + xy® sec? xy, x tan xy + x2y sec? xy.
» X
0. - —_, =~ .
(x+pP (x+pP
12. yx¥71 x¥log x, 13. 4, 14. 1/+/2. 16. 12, 4.
17. (i) 24xH2, 163y, 164%, 4x%;
(i) - 2y sin x®y — 4xty? cos Ay, - 2x sin x®y - 2x%y cos xfy,
- 2x sin 2% — 23 cos ¥y, —xd cos xly;
(iii) 2'(..)’3:..‘{2_), Ay —dxy 202" - ),
(P G G AR Gy
(iv) sinfy e tny, cosy e ¥ ¢ (1 +xsiny), cos y e=*0 ¥ (1 + x sin ¥),
x etBey (x cos? p-sin p)

20, 2+ 4/2y=3, x =1 21, -3

1L 2mx(x® +y477L 2mp(x2+ pEp L,

0z_ 7 9z_ _z & _ x oy_ vy Oy y ¥&x_ _x

Lol M Ml S 3 L e N
28, (i) z=AlvY; (i) z="4a(x);

(i) z=x%+2(y); (iv) z = —x cos y+ A(x):

V) z=x00) +p(¥); (vD) z=—sin x+ X2} +u0);

il) z=A0x)+u(y¥);
(viii) z=%x%+ 7(x) +u{)), where In all cases the functions X, j are
arbitrary.

o By B x
*ax x4yt ay ARyt

EXAMPLES 16b (Page 324)
1. 3x%h. 2. YA+ 2xyk, 3. (vh—xi)fA
4, hsiny+kxcosy. 5, 2xh + YR (xE+ 35, 6. e=Mh+ k).
7. wx+ N+ K). B (R +xE)(1+ XD, 9. 31-052.
10. 8F = 4nr(2k 8r + r 8H).
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11, BA=4(csin 4 35+ b sin A 8¢+ bec cos A 84); 50075 em?,

13. 08, 14. 3-3. 15. (i) 0-50025; (ii) 5-003; (ii) 9-9099.
k{381 8b 38t
16. 4ircm®. 18, 421 20, bra( TR TF )

EXAMPLES 16c (Page 331)
4. de=cos D dr—rsin0d8; dy=sin8dr+rcosbd.
8. dV=rn(2rhdr+ 2 dh).

N x(xE-2y%) L YO+ .. 1-ycosxy.
10, (i) ey (i) pre e () — e xy P
oy Hxd+ 8 - Ixy?, ™ 2y—-2x+3
2y N+ 23 4y - 2x+2
13 x+y=2. 14. (i) (%a, }f/32 a), (i) (0, 0.
17. (i) sin xy+xy cos xp; (11) + ¥y 3}:,
(ii _sin_xa_z_FCOj:gz_ G )xaz X2z x 82
y 8x p &x¥ Bx ¥ ax yayax
18 ou_ 3“ du, Ou_ou_Ou 19, sin z (2 - cos 2)
" & Ry By & o cos y (2—sin y)

22, () 2u; (i) w; (iii) 2.

24, () cos® [ cosp o) 5000V sin@ AV
1 o8 MR R Ty ool

sin 6 1 4 &YV cosO @l sind Ot
“—[“"' O %a W s

27. (i) A+ 1Y =const.; (ii) x sin y=const.

MISCELLANEQUS EXAMPLES (Page 333)

_E-2y dy__2 & __ 7
6 e+l % -5 B.g=-F = p
15, A0 -3y + D+4F 20, ZiAD X tlogsiny
T A DEA-4- 4D * logcos x - x oot y
2, @ Moy Ay AP dab 1A Gy - 2aay -2,
dx P -ax' dd O - 2%
ag Oz O B 2128 ]
* 8x asz?’ Byaz bacsx’ =2
30, f2. _d-esinu %, i 31, 0-14 cm.

Bx 1-2¢vsinute™ ou
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REVISION PAPERS (Page 337)

Al 2. -92pz -1 () k=0,3,8 () x=-3-%113
4, 4x=3; 2(x2+y)-3x+6py-2=0. 5 (i) x=T7; (i) x=2, 16.
s I-:-.Jn:-%%x2 %x‘ Tex®; 134,

9, ()i log — ~t e; Gi} 14 4/3;

(iii) 5t [8(log xP-dlogx+1]
10. (i) parabola; (i) circle; (iii} rectanguiar hyperbola.
A2 (@ x=-1,y=2, x=-2,y=%
4 blx—xP-2hx—x)y-y)taly—-yP=0;
(2 + B+ B) + 2y — Bxy+ 2p(hx" — ay’) + bx? - 2hx'y -+ ay®=0.
5. (i) The straight line y=1; (i1} the circle, x®+ 3% =4k%,
(iii} segments of circles on chord (-2, (), (2, 0) containing an
angle of i,
7. a(l -1 - rh 8.(0 0,220, (D n=3r, n#E3r
9, (i) (@) +sin®x—1sin®x+e; (5) 1fcos x— 3 cos Sxl+e.
10, x=3at/(t + £, y=3ar’ (1 + %); o= ?12“, 3{-
1.9x -3y -2+ 14=0.
12, x// (342, yi(xE+ 5%, - i+ 0R), xixt+ 5.
A3 2 (@a=-15b=10; x-1,2x+1. 3 () x=10; (i) x=%

4. () 3zly-xHx+y+z); (i) x=-%5
5 x2+p8=9; x2438L8x-9=0; x¥*+)%+8y+9=0.

6. (i) x*-2x%=5x-11=0. 8. (@) 6[1 - (%] - n.
9. (i) Ylog{x(x— 23} + ¢, (i) —ilog{1+x2)+ 2tan1x+c; ‘—:Btan‘l =
12. (3 12, 4).
Ad, 2. () a=1,b—-4,¢=0,d=10; (i) k=61; x=1% -4
3. %%5 + 4k) - 6kxy + y24(5 - 4K)=0. 5. x=-%
6. () A=}, B= -1 Jzﬂ(HJrl)“(a'HZ) 9. s

10, r(mcos 6 —-sin 0)=c; [ m— tan 6)3] 11. 069,

12, 17x+ 3y +22=17; 11;\/302
A5, 2 () x=-22410. 5 (3,00, (1,05 x*+y24+2x+2y- 30,
(Gnr1)2n+3) 3

6. (i) 161, 160, it i D &

S SRR L LY U LR T SR P Y- T
V7 I L VR 1 v gi
2.3t 52 72 ot
1T xll

. 1.2 . S
8. () Ix%tantx®—flog (1 +x*)+c, log Trva-= ¢
9. (i) +,0, +. 10, 4n2,
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A6 2 -G0S,

4 28(z-g)+2U(f-f)=c—¢y; x+ =2 8. (iii) 2.
6. a=3b 3 x=6,y=5 x=2, y=-1.

8. (i) x-1x¥+4x" 9. (i) Lem(sin 2x - 2 cos 2x).
10, —%(rr‘—-ﬁ). 12. 4no?[sin « — o oS al.

AT 2. A=1,8=3,C=T7,p=2,g=-1r=2

3 () k=13 (i) abe(b - eXe— aXa - b)bec +ca+ ab).

5. Kk +H=0.

6. cos T8=cos? B — 21 cos® 8 sin® 8 -+ 35 cos® 0 sin® B~ 7 cos O sin® 6;

sin 78=7 cos® 0 sin 8 - 35 cos® 0 sin® 8+ 21 cos? O sin® 6 - sin” §;
tal_l,;lg=‘?’ianB—SStansB+2] tan® 8 — tan? 8

1-21tan¥0+35tan 0- 7T tan® ®

7. +Bav(a®-26%); 2—+/2. 12. (1,2, 3), 4; /7.
A8, 2. () x=31,1,2; (i) -(b-cHc-a)a-b).

4, 5x4+3y+14=0. 7. (4ak?, Aak).

8. () dynn s DEAL T+ Gy oAD" 2=,

1-x (1-xP
£ x+6 y+4 z+6
%373 A a1 ; 4,2,6), (-1, ~1,0),
A9, 2. (i) a=4, b=1. 13 (@ k=_§, 3 (6) k=2.
4. (3,4); x*+y*-22x- 16y +65=0,
6. xcos-&(ﬂ+¢)+ysin§6(8+¢)=ms%(e_95); (xz yz) 7

a @5
7. (i) In(dE-1); D) Inln+ D+ Dn+ INn+4); (i) sin® #0/sin 0,
8 0,0,2. 9. (5 3- 10, sin ¢=r‘§. cos ¢=§:-
12. 2V = - x 4 +/(x® + 42).

A0, 1. 448 cm; 567 cm®. 8 gm=-3af p=2aB x=-§ -$ %
7. x+ym=3a. 8 (i) 1+2%4+3x%; (ii) i
L x=1,
9, /(24 2x - x) +sin ‘W, () =*-4; (i} 3\/3
2a b1

10 P=Re 2P 0o g 7 g3 B O VI

I (124 3v3x+ (18- 24/3)y — 3920,
(12 -3/ Dx + (18 £ 24/~ 392=0.
Adl 2 (i) P+gr-pt=0; x=-2t 3 (i) -4; (i) x=0, —(4n+6).
6. !H—v—?’ uv=%(§-—2‘—r) (4,0}, (b+3a, 0.
7. () n(3n—1), (i) 4,12, 36; 2.3
9, (@) log(l +&)+¢; (b)) x—tandx+e. 10.

12. (-3 £ %)
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ANSWERS

A2 1, B+ O 2 (a) 12a%, () x=-3a,qa, 2a.

)

3. {i) Infinite number of solutions; x=%% + 14z, y=3} + 361, z=191;
(ii) sclations infinite.

5. {1) Region between circles centre (1, — 2), radii 2 and 3;
(i) p=l,g=-4; x=-3, 14

R T
x 22 x+l (x+1)0F
8. ax®+2hxy + by? + 2ex+ Npx + gy) + clpx+qy)2=0

9. () i~ 12, (i) @ 54 @) 7.

2. < -1, 2> 5. 8sint0+ 45070 -8sin? 0~ 3sin 0+ 1=0.
1.3.5...@n-1)
2.4.6...(012n+2)

6. 7. Point O lics on S.

6. y+ix =2at+ar’. 7. wp=

1

2——I

3. Hlog. o) ——
1 x-3-+/(9-a) 1 .
:'z';/_(9-_a)1°g --+«./(9 P S R

1 x—-3 P -
Va9 Va9t Wiy

2. (i)

5.2 2 #(3«°- 10x3+15x). 5. 24/2, 2430

1 3
6. (a) 8(2?{- ) 4{2k+l) 8(2k+3] B 2L& - <<t

T £4(- L), 9, (i} 311-\/2, (ii} 4r-4; (iii) % Tog %
10, x(9—xP=IT% x-9= 1L+
18 (i) 212+ 3%+ 2D + S8x— 10y + 202 + 26 =0.

. . ]

12. a—u=sinxooshy+xcosxcoshy+ysmx sinh y==-—v;
éx dy

% _ i inh inh cos x ¢cosh oo
Eﬁxsmxsm y—cosxsinhy-y coshy=-o

S3 3 () ()a=35b=1; (i) a=3b, b+#1; (iii) a+#36;

by A= B=~% C=14;
Ster(n+ 1P[30 + 6n° - 0 - dn+ 2]

4, 2-o— b,
5. (x+tatbto)x+a-b-clx-a+b-cHx-a-b+ch
7. k(y-i)=2a(x-hy;, Ix+my=1.
9, (i) m; (D) Pafsin7lx+dxv{1-xB) - Fsinx +o)
(iif) 4 sin” 8- L sin®8+c.
n 0 J— .
10. VE) log3, Zlogl; my= a}(v,3+&log3) i(\/S &]ogS),
us=2—&(£—3 -I—}log3), u;=2—--}(1—;-§—§log3 , u; =4(8 - 2log3).
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S4. 3. abx®-(a®- bN)xy - aby*=0.
& () ¥*+)%a*- 302+ 3a) - W2ad - e +41 =0; (i) a=0, 1.
5, (i) The circle Wt + ¥ =1; (i) the circle (& 1)*++2=4,
6. i+ DY+ Da+3nn+ b+ dn(n - De; a=0, b=c=1,
T B+ -2ep+ B+ Wmy+x)=0,
8. r2}’+J|f-==21 uyp+x=3+ 24,

9 (i) —— logi ----- +e; (i) 5% (il) 3=

10. (i) é'rra‘, (i) £
85, 2 {a) x<-5, x>}
3 (D x=3 y=22=0;
(i) infinite number of solutions, x=3-2¢, y=2-1, z=1.
xt » o
4, y’+py’—p’y-p5—8q’=0. 5. ?+C(—C:T)_I
6. Conics touching S, and 5, at the origin and passing through the
other two points of intersection of 5, and S;;
x2— 2+ x(5a- 2)=0,
8. (a) 3m. 12, (i) - 2xy/(P - X0 (i) -cx™1fgRm L,
§6. 2 -1<c<1; all values except those between 1 and 1.
5 x¥+)d- 20x+5y—50=0: 6x+ 3y+ 10=0,

6 x=% :kv,s
8. % cos (2n + 1)0 sin 240 cosec 20 + % cos #0 sin nd cosec € + Jncos 8.
9, (- 1) »2%5-1 [4x? sin 2x - Baw cos 2x - 2n(2n — 1) sin 2x},
11, 8%-6x cm®
ST 2 ()x=T,y=-2 x=-2,y=T; x=3(5+iv/39), y=I5Fiv39);
(i) x=H1 £+/5), %{1+1/2:i:v’(7+2w/2)}

H1- V244/(7-2v/2)}.
5, 8-20X+12X*-2X*% x=12sin6, when 6=3r, {r, #m.

6. (@) x2+3®—2x-2p+1=0, x*+)* - 10x~ W0y +25=0; (1,2}
By T+2+/6.
% 60 G2 10, g 3+ 3r.
11, () 3ua®; (i) #ra from O on symmetrical radius.
S8 2. (i) ia(r- NGrE-n-1).

5. (i) +/34(cos10+isin18), where tan 6= LF%;
(ii) circle, centre {2, 0}, radius 1.

6. x,y, z=1,4, - 3. 9. a,=1; ay=1%
12 18 1.

10. & x+1 “Gr TR Gy W de-los2.

12 - 1+u ) i . 1+v

2v—wv+u+1) F(v~u)(v+ ut+1) 2Ay—wlv+u+ 1)'
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89 3 () xt-1003+1; x=+2~ /3, =+ 214/3;
(i) 2%+ 5x%+3x+6.
8 (i) —x+4+/2tan™?! (ﬂ/z
9, 3a%; 8= +in

11, (et mv 4 nw 4+ pXE =(2 2+ BB + B+ WP - d);
xRz 1=0, X2+ )2+ 28 120+ 12+ 122 - 13=0),

810, 3 x=-3 -42,2. 4, +3x v, — Xg¥y).

L1 1-x™*
6. {i) 1 + =-17 :
(i a’+ acos®+ (- 1)"“ aMcosn+ 180 +acos nﬂ]
1
CE

1+ 2acos il +q?
g B30 2089,

tan x) +¢; (i) grad.

S.1L 7.p=a°+1—l_’r,q=—l—£:—r; Hp=3.271-2 5,=3(2"-1)-2n.

9, —dxP-leat ... 11. £ cos y, €5 sin p.

§.12. 2, Max. 16, min, 5.
5. (amt — 2hlm + b2 + y2) — xn{fa - ib+ 2hm)
- yalmb— ma+2hD)=0.
7. System of conics touching § =0 at the ends of the chord a=0;
xt- 6xy—y’+3x+3y=0.
1 x+1 x—1
8. @ 3 +l Trcl Foxtl Bzl
Iv(n+l)*x" 3= Qny X 21 -2,
(1-x) (1-xP °
_1_+ Ix + 2x3 )
I-x (1=-x® {1-xF
12, (1) 2; (i) 2u.

(b}



INDEX

Amplitude of complex number, 124

Apotlonius: circle of, 117, median
theorem, 1

Arc length: polar curve, 263

Area of closed curve, 268: surface of
revolution, 263; triangle, 82

Argand diagram, 123, 131

Binomial coefficients, 205; equations,
184; series, 205

Centroid, 1

Ceva’s theorem, 14; convetse, 15

Chord of comtact: circle, 94; ellipse,
161; hyperbola, 161; parabola,
161

Circle: equations of, 310; eguation of
sphere through, 311

Circumcentrs; circumciscle, 4

Coaxal circles: definition, 105; e¢qua-
tion of, 106, 107; types of, 108

Cofactors, 61, 62

Collinear points, 81

Compiex numbers, 123; amplitude of,
124: conjugate numbers, 123; ex-
ponential form of, 137; fundamental
processes, 125, 128: peometrical
representation, 123, 125, 126, 123;
inequalities, 126; modulus of, 124

Complex variable, 136

Concurrent lines, 293

Concyclic points on a conic, 170

Conic: general equation of, 172; sys-
tems through four points, 173

Coplanar lines, 293

Curvature, radius of, 265

Definite integrals, properties of, 248

De Moivre'’s theorem, 181; applications
to factors, 187, to multiple angles,
191; to powers of trigonometrical
functions, 190; to roots, 182; to
summatien of series, 201

Determinants, 52; cofacters of, 61;
factorisaticn of, 59; laws of, 54-56;
minors, 61, 62

Difference method, 196

Differentials, 325

Direction-cosines, 280; ratios, 282

Equal fractions, 36

Equations: binemial, 184; cubic, 154;
linear, 65, 73; miscellaneous, 45; of
ath degree, 152; polynomial, 47, 142,
148; powers of roots of, 153; quartic,
152: reciprocal, 46; transformation
of, 155; with a common root, 146,
147; with repeated roots, 149

Esctibed circles, 10, 11

Excentres, 10

Expansions: algebraic and trigono-
metrical methods, 217; by differentia-
tion and integration, 222; by forma-~
tion of differential equation, 223;
by Maclaurin's theorem, 220; by
Taylor’s theorem, 219

Factors: algebraic, 28; by use of De
Moivre’s theorem, 187; highest com-
mon, 34; of symmetrical expressions,
33

Finite series, 196; arithmetic type, 196;
trigonometric, 200

Functions: homogeneous, 329; quad-
ratic, 37; rational gquadratic, 39

Highest common factor, 34
Hoemogeneous linear equations,
functions, 328

73;

Identities, algebraic, 27

Incentre, 10

Inconsistent equations, 66, 68

Independent equations, &6, 68

Induction, 209

Infinite integrals, 253; series, 216

Inscribed circle, 10, 11

Integration: algebraic functions, 232;
basic theorems, 230; by parts, 230;

. hyperbolic functions, 243; reduction
formulae, 244; trigonometric
functions, 237

Leibnitz’s theorem, 224

Limiting points, 109, 110

Line-pair, 84; angles between, 8§9;
bisectors of angles between, 91;
through the origin, 86

Logarithmic function, 251

413
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Maclaurin's theorem, 220

Mathematical induction, 209

Medians, 1, 2

Menelaus’s theorem, 16, converse, 17

Minors, 61

- Maoduolus of a complex number, 124

Muitiple angles: expansions of cosine,
sine, tangent, 191

Nine-paint circle, 7, &

Normals: ellipse, 166; hyperbola, 167;
parabola, 165; rectangular hyper-
bola, 167

Orthocentre, 5
Orthogonal circles, 5; spheres, 315, 316

Pappus theorems, 271

Parallel chords: ellipse, 162; hyperbola,
163; parabola, 162

Partial derivative, 317; differentiation,
317; higher derivatives, 320

Partial fractions, 42, 43

Pedal curve, 262; equation, 262 triangle,
[

Plane; equation of, 284; length of
perpendicular to, 286; perpendicular
form of equation, 285

Point circles, 109

Polar, 95, 161

Polar coordinates: plane curves ex-
pressed in, 261

Pole, 95, 161

Polynomial, 142; equations, 47, 142,
148; zeros of, 143

Power of a point, 100; series, 204

Powers of trigorometric functions, 190,
237

Quadratic functions, 37

INDEX

Radical axis, 100, 101

Radical centre, 102

Radius of cotvature: pedal form, 266;
polar form, 265

Ratio and proportion, 36

Rational quadratic functions, 39

Reduction formulae, 244

Remainder theorem, 31

Repeated roots of an eguation,
148

Rolle’s theorem, 144

Sense of a line, 14

Simson’s line, 20, 21

Sitmultaneous equations, 65, 151

Skew lines, 294, 296

Small changes, 322

Sphere: equation of, 304; length of
tangents to, 308; tangent plane 1o,
306; through four points, 304

Spheres: common points of two, 310;
systems of, 312

Tangents to a circle, 93

Taylor’s theorem, 219

Tetrahedron, properties of, 299

Three-dimensional geometry: angle
between two straight lines, 281; Car-
tesian coordinates, 277;  direction-
cosines, 280, direction ratios, 282;
the plane, 284; the sphere, 304; the
straight line, 289

Tatal differential coefficient, 326

Total partial derivative, 328 X

Transforrations: of complex variables,
133; of equations, 157

Trigonometric integrals, 237

Volume of revolution of a sectorial
area, 272
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